
Decentralized Identifiers (DIDs) v1.0

This version:
https://www.w3.org/TR/2020/WD-did-core-20201002/

Latest published version:
https://www.w3.org/TR/did-core/

Latest editor's draft:
https://w3c.github.io/did-core/

Previous version:
https://www.w3.org/TR/2020/WD-did-core-20201001/

Editors:
Drummond Reed (Evernym)
Manu Sporny (Digital Bazaar)
Markus Sabadello (Danube Tech)

Authors:
Drummond Reed (Evernym)
Manu Sporny (Digital Bazaar)
Dave Longley (Digital Bazaar)
Christopher Allen (Blockchain Commons)
Ryan Grant
Markus Sabadello (Danube Tech)
Jonathan Holt, DO, MS (ConsenSys Health)

Participate:
GitHub w3c/did-core
File a bug
Commit history
Pull requests

Copyright © 2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules
apply.

Core architecture, data model, and representations

W3C Working Draft 02 October 2020

https://www.w3.org/
https://www.w3.org/TR/2020/WD-did-core-20201002/
https://www.w3.org/TR/did-core/
https://w3c.github.io/did-core/
https://www.w3.org/TR/2020/WD-did-core-20201001/
https://www.linkedin.com/in/drummondreed/
https://www.evernym.com/
http://manu.sporny.org/
https://digitalbazaar.com/
https://www.linkedin.com/in/markus-sabadello-353a0821
https://danubetech.com/
https://www.linkedin.com/in/drummondreed/
https://www.evernym.com/
http://manu.sporny.org/
https://digitalbazaar.com/
https://digitalbazaar.com/
https://www.linkedin.com/in/christophera
https://www.blockchaincommons.com/
https://www.linkedin.com/in/markus-sabadello-353a0821
https://danubetech.com/
https://www.linkedin.com/in/jonathan-holt-do-ms
https://www.consensyshealth.com/
https://github.com/w3c/did-core/
https://github.com/w3c/did-core/issues/
https://github.com/w3c/did-core/commits/master
https://github.com/w3c/did-core/pulls/
https://www.w3.org/Consortium/Legal/ipr-notice#Copyright
https://www.w3.org/
https://www.csail.mit.edu/
https://www.ercim.eu/
https://www.keio.ac.jp/
https://ev.buaa.edu.cn/
https://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
https://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document

Decentralized identifiers (DIDs) are a new type of identifier that enables verifiable, decentralized
digital identity. A DID identifies any subject (e.g., a person, organization, thing, data model, abstract
entity, etc.) that the controller of the DID decides that it identifies. In contrast to typical, federated
identifiers, DIDs have been designed so that they may be decoupled from centralized registries,
identity providers, and certificate authorities. Specifically, while other parties might be used to help
enable the discovery of information related to a DID, the design enables the controller of a DID to
prove control over it without requiring permission from any other party. DIDs are URLs that associate
a DID subject with a DID document allowing trustable interactions associated with that subject. Each
DID document can express cryptographic material, verification methods, or service endpoints, which
provide a set of mechanisms enabling a DID controller to prove control of the DID. Service endpoints
enable trusted interactions associated with the DID subject. A DID document might contain semantics
about the subject that it identifies. A DID document might contain the DID subject itself (e.g. a data
model).

This document specifies a common data model, a URL format, and a set of operations for DIDs, DID
documents, and DID methods.

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical
report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This specification is under active development and implementers are advised against implementing the
specification unless they are directly involved with the W3C DID Working Group. There are use cases
[DID-USE-CASES] in active development that establish requirements for this document.

At present, there exist 40 experimental implementations and a preliminary test suite that will
eventually determine whether or not implementations are conformant. Readers are advised that
Appendix § A. Current Issues contains a list of concerns and proposed changes that will most likely
result in alterations to this specification.

Comments regarding this document are welcome. Please file issues directly on GitHub, or send them
to public-did-wg@w3.org (subscribe, archives).

Portions of the work on this specification have been funded by the United States Department of
Homeland Security's Science and Technology Directorate under contracts HSHQDC-16-R00012-H-
SB2016-1-002 and HSHQDC-17-C-00019. The content of this specification does not necessarily

Abstract

Status of This Document

https://www.w3.org/TR/
https://w3c-ccg.github.io/did-method-registry/#the-registry
https://github.com/w3c-ccg/did-test-suite/
https://github.com/w3c/did-core/issues/
mailto:public-did-wg@w3.org
mailto:public-did-wg-request@w3.org?subject=subscribe
https://lists.w3.org/Archives/Public/public-did-wg/

1.
1.1
1.2
1.3
1.4

2.

3.
3.1
3.2
3.2.1

reflect the position or the policy of the U.S. Government and no official endorsement should be
inferred.

Work on this specification has also been supported by the Rebooting the Web of Trust community
facilitated by Christopher Allen, Shannon Appelcline, Kiara Robles, Brian Weller, Betty Dhamers,
Kaliya Young, Kim Hamilton Duffy, Manu Sporny, Drummond Reed, Joe Andrieu, and Heather
Vescent.

This document was published by the Decentralized Identifier Working Group as a Working Draft. This
document is intended to become a W3C Recommendation.

GitHub Issues are preferred for discussion of this specification. Alternatively, you can send comments
to our mailing list. Please send them to public-did-wg@w3.org (archives).

Publication as a Working Draft does not imply endorsement by the W3C Membership.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It
is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 1 August 2017 W3C Patent Policy. W3C
maintains a public list of any patent disclosures made in connection with the deliverables of the group;
that page also includes instructions for disclosing a patent. An individual who has actual knowledge of
a patent which the individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

This document is governed by the 15 September 2020 W3C Process Document.

Introduction
A Simple Example
Design Goals
Architecture Overview
Conformance

Terminology

Identifier
DID Syntax
DID URL Syntax

DID Parameters

Table of Contents

https://www.w3.org/2019/did-wg/
https://github.com/w3c/did-core/issues/
mailto:public-did-wg@w3.org
https://lists.w3.org/Archives/Public/public-did-wg/
https://www.w3.org/Consortium/Patent-Policy-20170801/
https://www.w3.org/2004/01/pp-impl/117488/status
https://www.w3.org/Consortium/Patent-Policy-20170801/#def-essential
https://www.w3.org/Consortium/Patent-Policy-20170801/#sec-Disclosure
https://www.w3.org/2020/Process-20200915/

3.2.2
3.2.3
3.2.4
3.2.5

4.
4.1
4.2
4.3

5.
5.1
5.1.1
5.2
5.3
5.3.1
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.5

6.
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.3.3
6.3.3.1

6.3.3.2

7.

Path
Query
Fragment
Relative DID URLs

Data Model
Definition
Representations
Extensibility

Core Properties
DID Subject

alsoKnownAs
Control
Verification Methods

Key types and formats
Verification Relationships

authentication
assertionMethod
keyAgreement
capabilityInvocation
capabilityDelegation

Service Endpoints

Core Representations
JSON

Production
Consumption

JSON-LD
Production
Consumption

CBOR
Production
Consumption
CBOR Extensibility

DagCBOR

COSE signatures

Methods

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4

8.
8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3
8.3

9.
9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

10.
10.1
10.2
10.3

Method Schemes
Method Operations

Create
Read/Verify
Update
Deactivate

Security Requirements
Privacy Requirements

Resolution
DID Resolution

DID Resolution Input Metadata Properties
DID Resolution Metadata Properties
DID Document Metadata Properties

DID URL Dereferencing
DID URL Dereferencing Input Metadata Properties
DID URL Dereferencing Metadata Properties
DID URL Dereferencing Metadata Properties

Metadata Structure

Security Considerations
Choosing DID Resolvers
Binding of Identity

Proving Control of a DID and DID Document
Proving Control of a Public Key
Authentication and Verifiable Claims

Authentication Service Endpoints
Non-Repudiation
Notification of DID Document Changes
Key and Signature Expiration
Key Revocation and Recovery
The Role of Human-Friendly Identifiers
Immutability
Encrypted Data in DID Documents

Privacy Considerations
Keep Personally-Identifiable Information (PII) Private
DID Correlation Risks and Pseudonymous DIDs
DID Document Correlation Risks

10.4

11.
11.1
11.2
11.3

A.

B.
B.1
B.2
B.3
B.4

C.
C.1
C.2

Herd Privacy

Examples
DID Documents
Proving
Encrypting

Current Issues

IANA Considerations
application/did+json
application/did+ld+json
application/did+cbor
application/did+dag+cbor

References
Normative references
Informative references

This section is non-normative.

As individuals and organizations, many of us use globally unique identifiers in a wide variety of
contexts. They serve as communications addresses (telephone numbers, email addresses, usernames on
social media), ID numbers (for passports, drivers licenses, tax IDs, health insurance), and product
identifiers (serial numbers, barcodes, RFIDs). Resources on the Internet are identified by globally
unique identifiers in the form of MAC addresses; URIs (Uniform Resource Identifiers) are used for
resources on the Web and each web page you view in a browser has a globally unique URL (Uniform
Resource Locator).

The vast majority of these globally unique identifiers are not under our control. They are issued by
external authorities that decide who or what they identify and when they can be revoked. They are
useful only in certain contexts and recognized only by certain bodies (not of our choosing). They may
disappear or cease to be valid with the failure of an organization. They may unnecessarily reveal
personal information. And in many cases they can be fraudulently replicated and asserted by a
malicious third-party ("identity theft").

The Decentralized Identifiers (DIDs) defined in this specification are a new type of globally unique
identifier designed to enable individuals and organizations to generate our own identifiers using

1. Introduction §

systems we trust, and to prove control of those identifiers (authenticate) using cryptographic proofs
(for example, digital signatures, privacy-preserving biometric protocols, and so on).

Because we control the generation and assertion of these identifiers, each of us can have as many DIDs
as we need to respect our desired separation of identities, personas, and contexts (in the everyday
sense of these words). We can scope the use of these identifiers to the most appropriate contexts. We
can interact with other people, institutions or systems that require us to identify ourselves (or things we
control) while maintaining control over how much personal or private data should be revealed, and
without depending on a central authority to guarantee the continued existence of the identifier.

This specification does not require any particular technology or cryptography to underpin the
generation, persistence, resolution or interpretation of DIDs. Rather, it defines: a) the generic syntax
for all DIDs, and b) the generic requirements for performing the four basic CRUD operations (create,
read, update, deactivate) on the metadata associated with a DID (called the DID document).

This enables implementers to design specific types of DIDs to work with the computing infrastructure
they trust (e.g., blockchain, distributed ledger, decentralized file system, distributed database, peer-to-
peer network). The specification for a specific type of DID is called a DID method. Implementers of
applications or systems using DIDs can choose to support the DID methods most appropriate for their
particular use cases.

This specification is for:

Developers who want to enable users of their system to generate and assert their own identifiers
(producers of DIDs);

Developers who want to enable their systems to accept user-controlled identifiers (consumers of
DIDs);

Developers who wish to enable the use of DIDs with particular computing infrastructure (DID
method developers).

NOTE: Diversity of DID systems

DID methods can also be developed for identifiers registered in federated or centralized identity
management systems. Indeed, almost all types of identifier systems can add support for DIDs. This
creates an interoperability bridge between the worlds of centralized, federated, and decentralized
identifiers.

1.1 A Simple Example §

This section is non-normative.

A DID is a simple text string consisting of three parts, the:

URI scheme identifier (did)

Identifier for the DID method

DID method-specific identifier.

The example DID above resolves to a DID document. A DID document contains information
associated with the DID, such as ways to cryptographically authenticate the DID controller, as well as
services that can be used to interact with the DID subject.

This section is non-normative.

EXAMPLE 1: A simple example of a decentralized identifier (DID)

did:example:123456789abcdefghi

EXAMPLE 2: Minimal self-managed DID document

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123456789abcdefghi",
 "authentication": [{
 // used to authenticate as did:...fghi
 "id": "did:example:123456789abcdefghi#keys-1",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }],
 "service": [{
 // used to retrieve Verifiable Credentials associated with the DID
 "id":"did:example:123456789abcdefghi#vcs",
 "type": "VerifiableCredentialService",
 "serviceEndpoint": "https://example.com/vc/"
 }]
}

1.2 Design Goals §

Decentralized Identifiers are a component of larger systems, such as the Verifiable Credentials
ecosystem [VC-DATA-MODEL], which drove the design goals for this specification. This section
summarizes the primary design goals for this specification.

Goal Description

Decentralization
Eliminate the requirement for centralized authorities or single point failure in
identifier management, including the registration of globally unique identifiers,
public verification keys, service endpoints, and other metadata.

Control
Give entities, both human and non-human, the power to directly control their
digital identifiers without the need to rely on external authorities.

Privacy
Enable entities to control the privacy of their information, including minimal,
selective, and progressive disclosure of attributes or other data.

Security
Enable sufficient security for requesting parties to depend on DID documents
for their required level of assurance.

Proof-based
Enable DID controllers to provide cryptographic proof when interacting with
other entities.

Discoverability
Make it possible for entities to discover DIDs for other entities, to learn more
about or interact with those entities.

Interoperability
Use interoperable standards so DID infrastructure can make use of existing
tools and software libraries designed for interoperability.

Portability
Be system- and network-independent and enable entities to use their digital
identifiers with any system that supports DIDs and DID methods.

Simplicity
Favor a reduced set of simple features to make the technology easier to
understand, implement, and deploy.

Extensibility
Where possible, enable extensibility provided it does not greatly hinder
interoperability, portability, or simplicity.

This section provides a basic understanding of the major elements of DID architecture. Formal
definitions of terms are provided in § 2. Terminology .

1.3 Architecture Overview §

Figure 1 The basic components of DID architecture.

DIDs and DID URLs
A DID, or Decentralized Identifier, is a URI composed of three parts: the scheme "did:", a method
identifier, and a unique, method-specific identifier generated by the DID method. DIDs are
resolvable to DID documents. A DID URL extends the syntax of a basic DID to incorporate other
standard URI components (path, query, fragment) in order to locate a particular resource—for
example, a public key inside a DID document, or a resource available external to the DID
document.

DID Subjects
The subject of a DID is, by definition, the entity identified by the DID. The DID subject may also
be the DID controller. Anything can be the subject of a DID: person, group, organization,
physical thing, logical thing, etc.

DID Controllers
The controller of a DID is the entity (person, organization, or autonomous software) that has the
capability—as defined by a DID method—to make changes to a DID document. This capability is
typically asserted by the control of a set of cryptographic keys used by software acting on behalf
of the controller, though it may also be asserted via other mechanisms. Note that a DID may have
more than one controller, and the controller(s) may include the DID subject.

Verifiable Data Registries
In order to be resolvable to DID documents, DIDs are typically recorded on an underlying system
or network of some kind. Regardless of the specific technology used, any such system that
supports recording DIDs and returning data necessary to produce DID documents is called a
verifiable data registry. Examples include distributed ledgers, decentralized file systems,
databases of any kind, peer-to-peer networks, and other forms of trusted data storage.

DID documents

DID documents contain metadata associated with a DID. They typically express verification
methods (such as public keys) and services relevant to interactions with the DID subject. A DID
document is serialized according to a particular syntax (see § 6. Core Representations). The DID
itself is the value of the id property. The generic properties supported in a DID document are
specified in § 5. Core Properties. The properties present in a DID document may be updated
according to the applicable operations outlined in § 7. Methods .

DID Methods
DID methods are the mechanism by which a particular type of DID and its associated DID
document are created, resolved, updated, and deactivated using a particular verifiable data
registry. DID methods are defined using separate DID method specifications (see § 7. Methods).

NOTE

Conceptually, the relationship between this specification and a DID method specification is
similar to the relationship between the IETF generic URI specification ([RFC3986]) and a
specific URI scheme ([IANA-URI-SCHEMES] (such as the http: and https: schemes specified
in [RFC7230]). It is also similar to the relationship between the IETF generic URN
specification ([RFC8141]) and a specific URN namespace definition, (such as the UUID URN
namespace defined in [RFC4122]). The difference is that a DID method specification, as well
as defining a specific DID scheme, also specifies the methods creating, resolving, updating,
and deactivating DIDs and DID documents using a specific type of verifiable data registry.

DID resolvers and DID resolution
A DID resolver is a software and/or hardware component that takes a DID (and associated input
metadata) as input and produces a conforming DID document (and associated metadata) as
output. This process is called DID resolution. The inputs and outputs of the DID resolution
process are defined in § 8. Resolution . The specific steps for resolving a specific type of DID are
defined by the relevant DID method specification. Additional considerations for implementing a
DID resolver are discussed in [DID-RESOLUTION].

DID URL dereferencers and DID URL dereferencing
A DID URL dereferencer is a software and/or hardware component that takes a DID URL (and
associated input metadata) as input and produces a resource (and associated metadata) as output.
This process is called DID URL dereferencing. The inputs and outputs of the DID URL
dereferencing process are defined in § 8.2 DID URL Dereferencing . Additional considerations
for implementing a DID URL dereferencer are discussed in [DID-RESOLUTION].

1.4 Conformance §

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes
in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHOULD,
and SHOULD NOT in this document are to be interpreted as described in BCP 14 [RFC2119]
[RFC8174] when, and only when, they appear in all capitals, as shown here.

This document contains examples that contain JSON, CBOR, and JSON-LD content. Some of these
examples contain characters that are invalid, such as inline comments (//) and the use of ellipsis
(...) to denote information that adds little value to the example. Implementers are cautioned to
remove this content if they desire to use the information as valid JSON, CBOR, or JSON-LD.

Interoperability of implementations for DIDs and DID documents will be tested by evaluating an
implementation's ability to create and parse DIDs and DID documents that conform to the
specification. Interoperability for producers and consumers of DIDs and DID documents is provided
by ensuring the DIDs and DID documents conform. Interoperability for DID method specifications is
provided by the details in each DID method specification. It is understood that, in the same way that a
web browser is not required to implement all known URI schemes, conformant software that works
with DIDs is not required to implement all known DID methods (however, all implementations of a
given DID method must be interoperable for that method).

A conforming DID is any concrete expression of the rules specified in Section § 3. Identifier and
MUST comply with relevant normative statements in that section.

A conforming DID document is any concrete expression of the data model described in this
specification and MUST comply with the relevant normative statements in Sections § 4. Data Model
and § 5. Core Properties. A serialization format for the conforming document MUST be deterministic,
bi-directional, and lossless as described in Section § 6. Core Representations. The conforming DID
document MAY be transmitted or stored in any such serialization format.

A conforming DID method is any specification that complies with the relevant normative statements
in Section § 7. Methods .

A conforming producer is any algorithm realized as software and/or hardware and conforms to this
specification if it generates conforming DIDs or conforming DID Documents. A conforming producer
MUST NOT produce non-conforming DIDs or DID documents.

A conforming consumer is any algorithm realized as software and/or hardware and conforms to this
specification if it consumes conforming DIDs or conforming DID documents. A conforming consumer
MUST produce errors when consuming non-conforming DIDs or DID documents.

https://tools.ietf.org/html/bcp14

This section is non-normative.

This section defines the terms used in this specification and throughout decentralized identifier
infrastructure. A link to these terms is included whenever they appear in this specification.

authenticate
Authentication is a process (typically some type of protocol) by which an entity can prove it has a
specific attribute or controls a specific secret using one or more verification methods. With DIDs,
a common example would be proving control of the private key associated with a public key
published in a DID document.

blockchain
A specific type of distributed ledger technology (DLT) in which ledger entries are stored in
blocks of transactions that are grouped together and hashed into a cryptographic chain. Because
this type of DLT was introduced by Bitcoin, the term blockchain is sometimes used to refer
specifically to the Bitcoin ledger.

binding
A concrete mechanism used by a caller to invoke a DID resolver or a DID URL dereferencer.
This could be a local command line tool, a software library, or a network call such as an HTTPS
request.

decentralized identifier (DID)
A globally unique persistent identifier that does not require a centralized registration authority
because it is generated and/or registered cryptographically. The generic format of a DID is
defined in the DID Core specification. A specific DID scheme is defined in a DID method
specification. Many—but not all—DID methods make use of distributed ledger technology (DLT)
or some other form of decentralized network.

decentralized identity management
identity management that is based on the use of decentralized identifiers. Decentralized identity
management extends authority for identifier generation, registration, and assignment beyond
traditional roots of trust such as X.500 directory services, the Domain Name System, and most
national ID systems.

decentralized public key infrastructure (DPKI)
Public key infrastructure that does not rely on traditional certificate authorities because it uses
decentralized identifiers and DID documents) to discover and verify public key descriptions.

DID controller
An entity that has the capability to make changes to a DID document. A DID may have more than
one DID controller. The DID controller(s) can be denoted by the optional controller property
at the top level of the DID document. Note that one DID controller may be the DID subject.

2. Terminology §

https://en.wikipedia.org/wiki/Bitcoin
https://w3.org/TR/did-core
https://en.wikipedia.org/wiki/Identity_management
https://en.wikipedia.org/wiki/X.500
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Certificate_authority

DID delegate
An entity to whom a DID controller has granted permission to use a verification method
associated with a DID via a DID document. For example, a parent who controls a child's DID
document might permit the child to use their personal device in order to authenticate. In this case,
the child is the DID delegate. The child's personal device would contain the private cryptographic
material enabling the child to authenticate using the DID. However the child may not be
permitted to add other personal devices without the parent's permission.

DID document
A set of data describing the DID subject, including mechanisms, such as public keys and
pseudonymous biometrics, that the DID subject or a DID delegate can use to authenticate itself
and prove its association with the DID. A DID document may also contain other attributes or
claims describing the DID subject. A DID document may have one or more different
representations as defined in § 6. Core Representations or in the W3C DID Specification
Registries [DID-SPEC-REGISTRIES].

DID fragment
The portion of a DID URL that follows the first hash sign character (#). DID fragment syntax is
identical to URI fragment syntax.

DID method
A definition of how a specific DID scheme must be implemented to work with a specific
verifiable data registry. A DID method is defined by a DID method specification, which must
specify the precise operations by which DIDs are created, resolved and deactivated and DID
documents are written and updated. See § 7. Methods .

DID path
The portion of a DID URL that begins with and includes the first forward slash (/) character and
ends with either a question mark (?) character or a fragment hash sign (#) character (or the end of
the DID URL). DID path syntax is identical to URI path syntax. See § 3.2.2 Path.

DID query
The portion of a DID URL that follows and includes the first question mark character (?). DID
query syntax is identical to URI query syntax. See § 3.2.3 Query.

DID resolution
The function that takes as its input a DID and a set of input metadata and returns a DID document
in a conforming representation plus additional metadata. This function relies on the "Read"
operation of the applicable DID method. The inputs and outputs of this function are defined in
§ 8. Resolution .

DID resolver
A DID resolver is a software and/or hardware component that performs the DID resolution
function by taking a DID as input and producing a conforming DID document as output.

DID scheme

https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Claims-based_identity

The formal syntax of a decentralized identifier. The generic DID scheme begins with the prefix
did: as defined in the section of the DID Core specification. Each DID method specification
must define a specific DID scheme that works with that specific DID method. In a specific DID
method scheme, the DID method name must follow the first colon and terminate with the second
colon, e.g., did:example:

DID subject
The entity identified by a DID and described by a DID document. A DID has exactly one DID
subject. Anything can be a DID subject: person, group, organization, physical thing, digital thing,
logical thing, etc.

DID URL
A DID plus any additional syntactic component that conforms to the definition in § 3.2 DID URL
Syntax. This includes an optional DID path, optional DID query (and its leading ? character), and
optional DID fragment (and its leading # character).

DID URL dereferencing
The function that takes as its input a DID URL, a DID document, plus a set of dereferencing
options, and returns a resource. This resource may be a DID document plus additional metadata,
or it may be a secondary resource contained within the DID document, or it may be a resource
entirely external to the DID document. If the function begins with a DID URL, it use the DID
resolution function to fetch a DID document indicated by the DID contained within the DID
URL. The dereferencing function then can perform additional processing on the DID document to
return the dereferenced resource indicated by the DID URL. The inputs and outputs of this
function are defined in § 8.2 DID URL Dereferencing .

DID URL dereferencer
A software and/or hardware system that performs the DID URL dereferencing function for a
given DID URL or DID document.

distributed ledger (DLT)
A distributed database in which the various nodes use a consensus protocol to maintain a shared
ledger in which each transaction is cryptographically signed and chained to the previous
transaction.

proof purpose
A property of a DID document that communicates the purpose for which the DID controller
included a specific type of proof. It acts as a safeguard to prevent the proof from being misused
for a purpose other than the one it was intended for.

public key description
A data object contained inside a DID document that contains all the metadata necessary to use a
public key or verification key.

resource

https://www.w3.org/TR/did-core/did-syntax
https://w3.org/TR/did-core
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Consensus_(computer_science)

As defined by [RFC3986]: "...the term 'resource' is used in a general sense for whatever might be
identified by a URI." Similarly, any resource may serve as a DID subject identified by a DID.

representation
As defined for HTTP by [RFC7231]: "information that is intended to reflect a past, current, or
desired state of a given resource, in a format that can be readily communicated via the protocol,
and that consists of a set of representation metadata and a potentially unbounded stream of
representation data." A DID document is a representation of information describing a DID
subject. The § 6. Core Representations section of the DID Core specification defines several
representation formats for a DID document.

services
Means of communicating or interacting with the DID subject or associated entities via one or
more service endpoints. Examples include discovery services, agent services, social networking
services, file storage services, and verifiable credential repository services.

service endpoint
A network address (such as an HTTP URL) at which services operate on behalf of a DID subject.

Uniform Resource Identifier (URI)
The standard identifier format for all resources on the World Wide Web as defined by [RFC3986].
A DID is a type of URI scheme.

verifiable credential
A standard data model and representation format for cryptographically-verifiable digital
credentials as defined by the W3C [VC-DATA-MODEL].

verifiable data registry
A system that facilitates the creation, verification, updating, and/or deactivation of decentralized
identifiers and DID documents. A verifiable data registry may also be used for other
cryptographically-verifiable data structures such as verifiable credentials. For more information,
see [VC-DATA-MODEL].

verifiable timestamp
A verifiable timestamp enables a third-party to verify that a data object existed at a specific
moment in time and that it has not been modified or corrupted since that moment in time. If the
data integrity could reasonably have modified or corrupted since that moment in time, the
timestamp is not verifiable.

verification method
A set of parameters that can be used together with a process or protocol to independently verify a
proof. For example, a public key can be used as a verification method with respect to a digital
signature; in such usage, it verifies that the signer possessed the associated private key.

"Verification" and "proof" in this definition are intended to apply broadly. For example, a public
key might be used during Diffie-Hellman key exchange to negotiate a shared symmetric key for

https://w3.org/TR/did-core

encryption. This guarantees the integrity of the key agreement process. It is thus another type of
verification method, even though descriptions of the process might not use the words
"verification" or "proof."

verification relationship
An expression of the relationship between the DID subject and a verification method. An example
of a verification relationship is § 5.4.1 authentication.

Universally Unique Identifier (UUID)
A type of globally unique identifier defined by [RFC4122]. UUIDs are similar to DIDs in that
they do not require a centralized registration authority. UUIDs differ from DIDs in that they are
not resolvable or cryptographically-verifiable.

In addition to the terminology above, this specification also uses terminology from the [INFRA]
specification to formally define the abstract data model. When [INFRA] terminology is used, such as
string, ordered set, and map, it is linked directly to that specification.

This section describes the formal syntax for DIDs and DID URLs. The term "generic" is used to
differentiate the syntax defined here from syntax defined by specific DID methods in their respective
specifications.

The generic DID scheme is a URI scheme conformant with [RFC3986].

The DID scheme name MUST be an ASCII lowercase string.

The DID method name MUST be an ASCII lowercase string.

The following is the ABNF definition using the syntax in [RFC5234], which defines ALPHA and
DIGIT. All other rule names not defined in this ABNF are defined in [RFC3986].

did = "did:" method-name ":" method-specific-id
method-name = 1*method-char
method-char = %x61-7A / DIGIT
method-specific-id = *(*idchar ":") 1*idchar
idchar = ALPHA / DIGIT / "." / "-" / "_"

3. Identifier §

3.1 DID Syntax §

https://infra.spec.whatwg.org/#strings
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#maps
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase

A DID method specification MUST further restrict the generic DID syntax by defining its own
method-name and its own method-specific-id syntax. Case sensitivity and normalization of the
value of the method-specific-id rule MUST be defined by the governing DID method
specification. For more information, see Section § 7. Methods .

NOTE: Persistence

A DID is expected to be persistent and immutable. That is, a DID is bound exclusively and
permanently to its one and only subject. Even after a DID is deactivated, it is intended that it never
be repurposed.

Ideally, a DID would be a completely abstract decentralized identifier (like a UUID) that could be
bound to multiple underlying verifiable data registries over time, thus maintaining its persistence
independent of any particular system. However, registering the same identifier on multiple
verifiable data registries makes it extremely difficult to identify the authoritative version of a DID
document if the contents diverge between the different verifiable data registries. It also greatly
increases implementation complexity for developers.

To avoid these issues, developers should refer to the Decentralized Characteristics Rubric [DID-
RUBRIC] to decide which DID method best addresses the needs of the use case.

A DID URL always identifies a resource to be located. It can be used, for example, to identify a
specific part of a DID document.

This following is the ABNF definition using the syntax in [RFC5234]. It builds on the did scheme
defined in § 3.1 DID Syntax. The path-abempty, query, and fragment components are identical to
the ABNF rules defined in [RFC3986].

did-url = did path-abempty ["?" query] ["#" fragment]

NOTE

This specification reserves the semicolon (;) character for possible future use as a sub-delimiter for
parameters as described in [MATRIX-URIS].

3.2 DID URL Syntax §

3.2.1 DID Parameters §

https://tools.ietf.org/html/rfc3986#section-3.3
https://tools.ietf.org/html/rfc3986#section-3.4
https://tools.ietf.org/html/rfc3986#section-3.5

The DID URL syntax supports a simple format for parameters based on the query component (See
§ 3.2.3 Query).

Some DID parameter names (for example, for service selection) are completely independent of any
specific DID method and MUST always function the same way for all DIDs. Other DID parameter
names (for example, for versioning) MAY be supported by certain DID methods, but MUST operate
uniformly across those DID methods that do support them.

The following table defines a set of DID parameter names.

Parameter Name Description

hl
A resource hash of the DID document to add integrity protection, as specified in
[HASHLINK]. The associated value MUST be an ASCII string. This parameter
is non-normative.

service
Identifies a service from the DID document by service ID. The associated value
MUST be an ASCII string.

version-id

Identifies a specific version of a DID document to be resolved (the version ID
could be sequential, or a UUID, or method-specific). Note that this parameter
might not be supported by all DID methods. The associated value MUST be an
ASCII string.

version-time

Identifies a certain version timestamp of a DID document to be resolved. That
is, the DID document that was valid for a DID at a certain time. Note that this
parameter might not be supported by all DID methods. The associated value
MUST be an ASCII string which is a valid XML datetime value, as defined in
section 3.3.7 of W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes [XMLSCHEMA11-2]. This datetime value MUST be normalized to
UTC 00:00, as indicated by the trailing "Z".

relative-ref

A relative URI reference according to RFC3986 Section 4.2 that identifies a
resource at a service endpoint, which is selected from a DID document by using
the service parameter. The associated value MUST be an ASCII string and
MUST use percent-encoding for certain characters as specified in RFC3986
Section 2.1.

Implementers as well as DID method specification authors MAY use additional DID parameters that
are not listed here. For maximum interoperability, it is RECOMMENDED that DID parameters use the
official W3C DID Specification Registries mechanism [DID-SPEC-REGISTRIES], to avoid collision
with other uses of the same DID parameter with different semantics.

Additional considerations for processing these parameters are discussed in [DID-RESOLUTION].

https://infra.spec.whatwg.org/#ascii-string
https://infra.spec.whatwg.org/#ascii-string
https://infra.spec.whatwg.org/#ascii-string
https://infra.spec.whatwg.org/#ascii-string
https://www.w3.org/TR/xmlschema11-2/
https://tools.ietf.org/html/rfc3986#section-4.2
https://infra.spec.whatwg.org/#ascii-string
https://tools.ietf.org/html/rfc3986#section-2.1

Two example DID URLs using the service and version-time DID parameters are shown below.

Adding a DID parameter to a DID URL means that the parameter becomes part of an identifier for a
resource (the DID document or other). Alternatively, the DID resolution and the DID URL
dereferencing functions can also be influenced by passing input metadata to a DID resolver that are not
part of the DID URL. (See § 8.1.1 DID Resolution Input Metadata Properties). Such input metadata
could for example control caching or the desired encoding of a resolution result. This is comparable to
HTTP, where certain parameters could either be included in an HTTP URL, or alternatively passed as
HTTP headers during the dereferencing process. The important distinction is that DID parameters that
are part of the DID URL should be used to specify what resource is being identified, whereas input
metadata that is not part of the DID URL should be use to control how that resource is resolved or
dereferenced.

DID parameters MAY be used if there is a clear use case where the parameter needs to be part of a URI
that can be used as a link, or as a resource in RDF / JSON-LD documents.

DID parameters SHOULD NOT be used if the same functionality can be expressed by passing input
metadata to a DID resolver, and if there is no need to construct a URI for use as a link, or as a resource
in RDF / JSON-LD documents.

A DID path is identical to a generic URI path and MUST conform to the path-abempty ABNF rule
in [RFC3986].

A DID method specification MAY specify ABNF rules for DID paths that are more restrictive than the
generic rules in this section.

EXAMPLE 3: A DID URL with a 'service' DID parameter

did:foo:21tDAKCERh95uGgKbJNHYp?service=agent

EXAMPLE 4: A DID URL with a 'version-time' DID parameter

did:foo:21tDAKCERh95uGgKbJNHYp?version-time=2002-10-10T17:00:00Z

3.2.2 Path §

https://tools.ietf.org/html/rfc3986#section-3.3

A DID query is derived from a generic URI query and MUST conform to the did-query ABNF rule
in Section § 3.2 DID URL Syntax. If a DID query is present, it MUST be used as described in Section
§ 3.2.1 DID Parameters.

A DID method specification MAY specify ABNF rules for DID queries that are more restrictive than
the generic rules in this section.

A DID fragment is used as method-independent reference into the DID document to identify a
component of the document (for example, a unique public key description or service endpoint). DID
fragment syntax and semantics are identical to a generic URI fragment and MUST conform to
RFC 3986, section 3.5. To dereference a DID fragment, the complete DID URL including the DID
fragment MUST be used as input to the DID URL dereferencing function for the target component in
the DID document object. For more information, see § 8.2 DID URL Dereferencing .

A DID method specification MAY specify ABNF rules for DID fragments that are more restrictive than
the generic rules in this section.

In order to maximize interoperability, implementers are urged to ensure that DID fragments are
interpreted in the same way across representations (as described in § 6. Core Representations). For
example, while JSON Pointer [RFC6901] can be used in a DID fragment, it will not be interpreted in
the same way across representations.

EXAMPLE 5

did:example:123456/path

3.2.3 Query §

EXAMPLE 6

did:example:123456?query=true

3.2.4 Fragment §

EXAMPLE 7

did:example:123456#public-key-1

https://tools.ietf.org/html/rfc3986#section-3.5

Additional semantics for fragment identifiers, which are compatible with and layered upon the
semantics in this section, are described for JSON-LD representations in Section § B.2
application/did+ld+json.

A relative DID URL is any URL value in a DID document that does not start with did:<method-
name>:<method-specific-id>. More specifically, it is any URL value that does not start with the
ABNF defined in Section § 3.1 DID Syntax. The contents of the URL typically refers to a resource in
the same DID document. Relative DID URLs MAY contain relative path components, query
parameters, and fragment identifiers.

When resolving a relative DID URL reference, the algorithm specified in RFC3986 Section 5:
Reference Resolution MUST be used. The base URI value is the DID that is associated with the DID
subject, see Section § 5.1 DID Subject. The scheme is did. The authority is a combination of
<method-name>:<method-specific-id>, and the path, query, and fragment values are those
defined in Section § 3.2.2 Path, Section § 3.2.3 Query, and Section § 3.2.4 Fragment, respectively.

Relative DID URLs are often used to identify verification methods and services in a DID Document
without having to use absolute URLs, which tend to be more verbose than necessary.

In the example above, the relative DID URL value will be transformed to an absolute DID URL value
of did:example:123456789abcdefghi#key-1.

3.2.5 Relative DID URLs §

EXAMPLE 8: An example of a relative DID URL

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123456789abcdefghi",
 "verificationMethod": [{
 "id": "did:example:123456789abcdefghi#key-1",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }, ...],
 "authentication": [
 // a relative DID URL used to reference a verification method above
 "#key-1"
]
}

https://tools.ietf.org/html/rfc3986#section-5

This specification defines an abstract data model for DID documents, independent of any specific
representation. This section provides a high-level description of the data model, a set of requirements
for representations, and a set of requirements for extensibility.

A DID document consists of a map of properties, which are name-value pairs (ie. a property name, and
a property value). The definitions of each of these properties are specified in section § 5. Core
Properties. Specific representations are defined in section § 6. Core Representations.

Following are the requirements for representations.

1. A representation MUST define an unambiguous encoding and decoding of all property names and
their associated values as defined in this specification. This means anything you can represent in
the DID document data model can be represented in any compliant representation.

2. The representation MUST be associated with an IANA-registered MIME type.

3. The representation MUST define fragment processing rules for its MIME type that are conformant
with the fragment processing rules defined in section § 3.2.4 Fragment of this specification.

The core representations are specified in section § 6. Core Representations.

The data model supports two types of extensibility.

1. For maximum interoperability, it is RECOMMENDED that extensions use the official W3C DID
Specification Registries mechanism [DID-SPEC-REGISTRIES]. The use of this mechanism for
new properties or other extensions is the only specified method that ensures that two different
representations will be able to work together.

2. Representations MAY define other extensibility mechanisms including methods for decentralized
extensions. Such extension mechanisms MUST support lossless conversion into any other
conformant representation.

4. Data Model §

4.1 Definition §

4.2 Representations §

4.3 Extensibility §

https://infra.spec.whatwg.org/#maps
https://infra.spec.whatwg.org/#map-entry

NOTE

It is always possible for two specific implementations to agree out-of-band to use a mutually
understood extension or representation that is not recorded in the DID Core Registries [DID-
SPEC-REGISTRIES]; interoperability between such implementations and the larger ecosystem
will be less reliable.

A DID points to a DID document. DID documents are the serialization of the data model outlined in
Section § 4. Data Model. The following sections define the properties in a DID document, including
whether these properties are required or optional. These properties describe relationships between the
DID subject and the value of the property.

For reference, the core properties found at the top level of a DID document are as follows. Properties
belonging to other objects referenced in the DID document are also listed, with their respective top-
level property.

id: defined in § 5.1 DID Subject

alsoKnownAs: defined in § 5.1.1 alsoKnownAs

controller: defined in § 5.2 Control

verificationMethod: defined in § 5.3 Verification Methods. Sub-properties include id, type,
controller.

authentication: defined in § 5.4.1 authentication.

assertionMethod: defined in § 5.4.2 assertionMethod.

keyAgreement: defined in § 5.4.3 keyAgreement.

capabilityDelegation: defined in § 5.4.5 capabilityDelegation.

capabilityInvocation: defined in § 5.4.4 capabilityInvocation.

service: defined in § 5.5 Service Endpoints. Sub-properties include id, type and
serviceEndpoint.

The DID subject is denoted with the id property. The DID subject is the entity that the DID document
is about. That is, it is the entity identified by the DID and described by the DID document.

5. Core Properties §

5.1 DID Subject §

DID documents MUST include the id property.

id
The value of id MUST be a string that conforms to the rules in Section § 3.1 DID Syntax.

NOTE: Intermediate representations

DID method specifications can create intermediate representations of a DID document that do not
contain the id property, such as when a DID resolver is performing DID resolution. However, the
fully resolved DID document always contains a valid id property. The value of id in the resolved
DID document MUST match the DID that was resolved, or be populated with the equivalent
canonical DID specified by the DID method, which SHOULD be used by the resolving party going
forward.

A DID subject can have multiple identifiers for different purposes, or at different times. The assertion
that two or more DIDs (or other types of URI) identify the same DID subject can be made using the
alsoKnownAs property.

DID documents MAY include the alsoKnownAs property.

alsoKnownAs
The value of alsoKnownAs MUST be a list where each item in the list is a URI conforming to
[RFC3986].

This relationship is a statement that the subject of this identifier is also identified by one or more
other identifiers.

EXAMPLE 9

{
 "id": "did:example:21tDAKCERh95uGgKbJNHYp"
}

5.1.1 alsoKnownAs §

https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#lists

NOTE: Equivalence and alsoKnownAs

Applications might choose to consider two identifiers related by alsoKnownAs to be equivalent if
the alsoKnownAs relationship is reciprocated in the reverse direction. It is best practice not to
consider them equivalent in the absence of this inverse relationship. In other words, the presence of
an alsoKnownAs assertion does not prove that this assertion is true. Therefore it is strongly
advised that a requesting party obtain independent verification of an alsoKnownAs assertion.

Given that the DID subject might use different identifiers for different purposes, an expectation of
strong equivalence between the two identifiers, or merging the graphs of the two corresponding
DID documents, is not necessarily appropriate, even with a reciprocal relationship.

Authorization is the mechanism used to state how operations are performed on behalf of the DID
subject. A DID controller is authorized to make changes to the respective DID document.

A DID document MAY include a controller property to indicate the DID controller(s). If so:

controller
The value of the controller property MUST be a string or an ordered set of strings that
conform to the rules in Section § 3.1 DID Syntax. The corresponding DID document(s) SHOULD
contain verification relationships that explicitly permit the use of certain verification methods for
specific purposes.

When a controller property is present in a DID Document, its value expresses one or more DIDs.
Any verification methods contained in the DID Documents for those DIDs SHOULD be accepted as
authoritative, such that proofs that satisfy those verification methods are to be considered equivalent to
proofs provided by the DID Subject.

NOTE: Authorization vs authentication

Note that Authorization is separate from § 5.4.1 authentication. This is particularly important for
key recovery in the case of key loss, when the subject no longer has access to their keys, or key
compromise, where the DID controller's trusted third parties need to override malicious activity by
an attacker. See Section § 9. Security Considerations .

5.2 Control §

https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#string

A DID document can express verification methods, such as cryptographic keys, which can be used to
authenticate or authorize interactions with the DID subject or associated parties. The information
expressed often includes globally unambiguous identifiers and public key material, which can be used
to verify digital signatures. For example, a public key can be used as a verification method with
respect to a digital signature; in such usage, it verifies that the signer possessed the associated private
key.

Verification methods might take many parameters. An example of this is a set of five cryptographic
keys from which any three are required to contribute to a threshold signature. Methods need not be
cryptographic. An example of this might be the contact information for a biometric service provider
that compares a purported DID controller against a candidate biometric vector.

In order to maximize interoperability, support for public keys as verification methods is restricted: see
§ 5.3.1 Key types and formats. For other types of verification method, the verification method
SHOULD be registered in the [DID-SPEC-REGISTRIES].

A DID document MAY include a verificationMethod property.

verificationMethod
If a DID document includes a verificationMethod property, the value of the property MUST
be an ordered set of verification methods, where each verification method is described by a map
containing properties. The properties MUST include the id, type, controller, and specific
verification method properties, and MAY include additional properties.

EXAMPLE 10: DID document with a controller property

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123456789abcdefghi",
 "controller": "did:example:bcehfew7h32f32h7af3",
 "service": [{
 // used to retrieve Verifiable Credentials
 associated with the DID
 "type": "VerifiableCredentialService",
 "serviceEndpoint": "https://example.com/vc/"
 }]
}

5.3 Verification Methods §

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-map

The value of the id property for a verification method MUST be a URI. When more than one
verification method is present, the value of verificationMethod MUST NOT contain multiple
entries with the same id. If the value of verificationMethod contains multiple entries with
the same id, a DID document processor MUST produce an error.

In the case where a verification method is a public key, the value of the id property MAY be
structured as a compound key. This is especially useful for integrating with existing key
management systems and key formats such as JWK [RFC7517]. It is RECOMMENDED that
JWK kid values are set to the public key fingerprint [RFC7638]. It is RECOMMENDED that
verification methods that use JWKs to represent their public keys utilize the value of kid as their
fragment identifier. See the first key in Example 13 for an example of a public key with a
compound key identifier.

The value of the type property MUST be exactly one verification method type. In order to
maximize global interoperability, the verification method type SHOULD be registered in the
[DID-SPEC-REGISTRIES].

The value of the controller property MUST be a string that conforms to the rules in Section
§ 3.1 DID Syntax.

NOTE: Verification method controller(s) and DID controller(s)

The semantics of the controller property are the same when the subject of the relationship is the
DID document as when the subject of the relationship is a verification method, such as a public
key. Since a key (for example) can't control itself, and the key controller cannot be inferred from
the DID document, it is necessary to explicitly express the identity of the controller of the key. The
difference is that the value of controller for a verification method is not necessarily a DID
controller. DID controller(s) are expressed using the controller property on the top level of the
DID document; see Section § 5.2 Control .

https://en.wikipedia.org/wiki/Compound_key
https://infra.spec.whatwg.org/#string

As well as the verificationMethod property, verification methods can be embedded in or
referenced from properties associated with various verification relationships (see § 5.4 Verification
Relationships. Referencing verification methods allows them to be used with more than one
verification relationship.

The steps to use when processing a verification method in a DID document are:

1. Let value be the data associated with the verificationMethod property or property for a
particular verification relationship and initialize result to null.

2. If value is an object, the verification method material is embedded. Set result to value.

3. If value is a string, the verification method is included by reference. Assume value is a URL.

1. Dereference the URL and retrieve the verificationMethod properties associated with
the URL. For example, process the verificationMethod property at the top-level of the
dereferenced document.

2. Iterating through each object, if the id property of the object matches value, set result to
the object.

4. If result does not contain at least the id, type, and controller properties, as well as any
mandatory public cryptographic material, as determined by the type property of result, throw an
error.

EXAMPLE 11: Example verification methods

{
 "@context": ["https://www.w3.org/ns/did/v1", "https://w3id.org/security
 "id": "did:example:123456789abcdefghi",
 ...
 "verificationMethod": [{
 "id": ...,
 "type": ...,
 "controller": ...,
 ...
]}
}

A public key can be used as a verification method.

A verification method MUST NOT contain multiple verification material properties. For example,
expressing key material in a verification method using both publicKeyJwk and publicKeyBase58
at the same time is prohibited.

This specification strives to limit the number of formats for expressing public key material in a DID
document to the fewest possible, to increase the likelihood of interoperability. The fewer formats that
implementers have to implement, the more likely it will be that they will support all of them. This
approach attempts to strike a delicate balance between ease of implementation and supporting formats
that have historically had broad deployment. The specific types of key formats that are supported in
this specification are listed here.

When using any of the public key types described here, public key expression MUST NOT use any
other key format than those listed in the Public Key Support table. For public key types that are not
listed here, the type value and corresponding format property SHOULD be registered in [DID-SPEC-
REGISTRIES], as with any other verification method.

EXAMPLE 12: Embedding and referencing verification methods

{
...

 "authentication": [
 // this key is referenced, it may be used with more than one verificat
 "did:example:123456789abcdefghi#keys-1",
 // this key is embedded and may *only* be used for authentication
 {
 "id": "did:example:123456789abcdefghi#keys-2",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }
],

...
}

5.3.1 Key types and formats §

ISSUE

The Working Group is still debating whether the base encoding format used will be Base58
(Bitcoin) [BASE58], base64url [RFC7515], or base16 (hex) [RFC4648]. The entries in the table
below currently assume PEM and Base58 (Bitcoin), but might change to base64url and/or base16
(hex) after the group achieves consensus on this particular issue.

ISSUE

The Working Group is still debating whether secp256k1 Schnorr public key values will be
elaborated upon in this specification and if so, how they will be expressed and encoded.

This table defines the support for public key expression in a DID document. For each public key type, a maximum
of two encoding formats are supported.

Key Type
(type value)

Support

RSA
(RsaVerificationKey2018)

RSA public key values MUST either be
encoded as a JWK [RFC7517] or be encoded
in Privacy Enhanced Mail (PEM) format using
the publicKeyPem property.

ed25519
(Ed25519VerificationKey2018)

Ed25519 public key values MUST either be
encoded as a JWK [RFC7517] or be encoded
as the raw 32-byte public key value in Base58
Bitcoin format [BASE58] using the
publicKeyBase58 property.

secp256k1-koblitz
(pending)

Secp256k1 Koblitz public key values MUST
either be encoded as a JWK [RFC7517] or be
encoded as the raw 33-byte public key value in
Base58 Bitcoin format [BASE58] using the
publicKeyBase58 property.

secp256r1
(SchnorrSecp256k1VerificationKey2019)

Secp256r1 public key values MUST either be
encoded as a JWK [RFC7517] or be encoded
as the raw 32-byte public key value encoded in
Base58 Bitcoin format [BASE58] using the
publicKeyBase58 property.

Key Type
(type value)

Support

Curve25519
(X25519KeyAgreementKey2019)

Curve25519 (also known as X25519) public
key values MUST either be encoded as a JWK
[RFC7517] or be encoded as the raw 32-byte
public key value in Base58 Bitcoin format
[BASE58] using the publicKeyBase58
property.

JWK
(JsonWebKey2020)

Key types listed in JOSE, represented using
[RFC7517] using the publicKeyJwk property.

Example:

https://www.iana.org/assignments/jose/jose.xhtml

If a public key does not exist in the DID document, it MUST be assumed the key was revoked or is
invalid. The DID document MUST NOT express revoked keys using a verification relationship. Each
DID method specification is expected to detail how revocation is performed and tracked.

NOTE

Caching and expiration of the keys in a DID document is entirely the responsibility of DID
resolvers and requesting parties. For more information, see Section § 8. Resolution .

EXAMPLE 13: Various public keys

{
 "@context": ["https://www.w3.org/ns/did/v1", "https://w3id.org/security/
 "id": "did:example:123456789abcdefghi",
 ...
 "verificationMethod": [{
 "id": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A",
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "crv": "Ed25519",
 "x": "VCpo2LMLhn6iWku8MKvSLg2ZAoC-nlOyPVQaO3FxVeQ",
 "kty": "OKP",
 "kid": "_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A"
 }
 }, {
 "id": "did:example:123456789abcdefghi#keys-1",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:pqrstuvwxyz0987654321",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }, {
 "id": "did:example:123456789abcdefghi#keys-2",
 "type": "Secp256k1VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyHex": "02b97c30de767f084ce3080168ee293053ba33b235d7116a3263d
 }],
 ...
}

5.4 Verification Relationships §

A verification relationship expresses the relationship between the DID subject and a verification
method.

A DID document MAY include a property expressing a specific verification relationship. In order to
maximize global interoperability, the property SHOULD be registered in [DID-SPEC-REGISTRIES].

The information in a DID document MUST be explicit about the verification relationship between the
DID subject and the verification method. Verification methods that are not associated with a particular
verification relationship MUST NOT be used for that verification relationship. See the sections below
for more detailed examples of a verification relationship.

Authentication is a verification relationship which an entity can use to prove it is the DID subject or
acting on behalf of the DID Subject as a DID Controller. The verifier of an authentication attempt can
check if the authenticating party is presenting a valid proof of authentication, that is, that they are who
they say they are. Note that a successful authentication on its own might or might not confer authority;
that is up to the verifying application.

NOTE: Uses of authentication

If authentication is established, it is up to the DID method or other application to decide what to do
with that information. A particular DID method could decide that authenticating as a DID
controller is sufficient to, for example, update or delete the DID document. Another DID method
could require different keys, or a different verification method entirely, to be presented in order to
update or delete the DID document than that used to authenticate. In other words, what is done
after the authentication check is out of scope for the DID data model, but DID methods and
applications are expected to define this themselves.

A DID document MAY include an authentication property. The authentication property is a
relationship between the DID subject and a set of verification methods (such as, but not limited to,
public keys). It means that the DID subject has authorized some set of verification methods (per the
value of the authentication property) for the purpose of authentication.

authentication
The associated value MUST be an ordered set of one or more verification methods. Each
verification method MAY be embedded or referenced.

This statement is useful to any authentication verifier that needs to check to see if an entity that is
attempting to authenticate is, in fact, presenting a valid proof of authentication. When a verifier

5.4.1 authentication §

https://infra.spec.whatwg.org/#ordered-set

receives some data (in some protocol-specific format) that contains a proof that was made for the
purpose of "authentication", and that says that an entity is identified by the DID, then that verifier
checks to ensure that the proof can be verified using a verification method (e.g., public key) listed
under authentication in the DID Document.

The verification method indicated by the authentication property of a DID document can only be
used to authenticate the DID subject. To authenticate the DID controller (in cases where the DID
controller is not also the DID subject) the entity associated with the value of controller (see
Section § 5.2 Control) needs to authenticate itself with its own DID document and attached
authentication verification relationship.

Example:

The assertionMethod property is used to express a verification relationship which indicates that a
verification method can be used to verify a proof that a statement was asserted on behalf of the DID

EXAMPLE 14: Authentication property containing three verification methods

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123456789abcdefghi",
 ...
 "authentication": [
 // this method can be used to authenticate as did:...fghi
 "did:example:123456789abcdefghi#keys-1",
 // this method can be used to authenticate as did:...fghi
 "did:example:123456789abcdefghi#biometric-1",
 // this method is *only* authorized for authentication, it may not
 // be used for any other proof purpose, so its full description is
 // embedded here rather than using only a reference
 {
 "id": "did:example:123456789abcdefghi#keys-2",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }
],
 ...
}

5.4.2 assertionMethod §

subject. A verifier of such a proof can ensure that a verification method used with the proof was
authorized to be used with proofs for that purpose by checking that the verification method is
contained in the assertionMethod of the DID Document.

NOTE: Uses of assertionMethod

If assertionMethod is established, it is up to the verifier to validate that the verification method
used for providing proof of an assertion is valid and is associated with the assertionMethod
verification relationship. An example of when this property is useful is during the processing of a
verifiable credential by a verifier. During validation, a verifier checks to see if a verifiable
credential has been signed by the DID Subject by checking that the verification method used to
assert the proof is associated with the assertionMethod property in the corresponding DID
Document.

A DID document MAY include an assertionMethod property.

assertionMethod
The associated value MUST be an ordered set of one or more verification methods. Each
verification method MAY be embedded or referenced.

Example:

https://infra.spec.whatwg.org/#ordered-set

The keyAgreement property is used to express a verification relationship which an entity can use to
engage in key agreement protocols on behalf of the DID subject. The counterparties in a key
agreement protocol can use the keyAgreement verification relationship to check whether a party
performing a key agreement protocol on behalf of the DID subject is authorized by checking if the
verification method used during the key agreement protocol is associated with the keyAgreement
property contained in the DID Document.

A DID document MAY include an keyAgreement property.

keyAgreement
The associated value MUST be an ordered set of one or more verification methods. Each
verification method MAY be embedded or referenced.

EXAMPLE 15: Assertion method property containing two verification methods

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123456789abcdefghi",
 ...
 "assertionMethod": [
 // this method can be used to assert statements as did:...fghi
 "did:example:123456789abcdefghi#keys-1",
 // this method is *only* authorized for assertion of statements, it ma
 // be used for any other verification relationship, so its full descri
 // embedded here rather than using only a reference
 {
 "id": "did:example:123456789abcdefghi#keys-2",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }
],
 ...
}

5.4.3 keyAgreement §

https://infra.spec.whatwg.org/#ordered-set

NOTE: Uses of keyAgreement

It is up to a verifier to validate that the verification method used during a key agreement exchange
is valid and is associated with the keyAgreement property. An example of when this property is
useful is during the establishment of a TLS session on behalf of the DID Subject. In this case, the
counterparty checks that the verification method used during the protocol handshake is associated
with the keyAgreement property in the DID Document.

Example:

The capabilityInvocation property is used to express a verification relationship which an entity
can use to invoke capabilities as the DID subject or on behalf of the DID subject. A capability is an
expression of an action that the DID subject is authorized to take. The verifier of a capability
invocation attempt can check the validity of a capability by checking if the verification method used
with the proof is contained in the capabilityInvocation property of the DID Document.

EXAMPLE 16: Key agreement property containing two verification methods

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123456789abcdefghi",
 ...
 "keyAgreement": [
 // this method can be used to perform key agreement as did:...fghi
 "did:example:123456789abcdefghi#keys-1",
 // this method is *only* authorized for key agreement usage, it may no
 // be used for any other verification relationship, so its full descri
 // embedded here rather than using only a reference
 {
 "id": "did:example:123#zC9ByQ8aJs8vrNXyDhPHHNNMSHPcaSgNpjjsBYpMMjsTd
 "type": "X25519KeyAgreementKey2019",
 "controller": "did:example:123",
 "publicKeyBase58": "9hFgmPVfmBZwRvFEyniQDBkz9LmV7gDEqytWyGZLmDXE"
 }
],
 ...
}

5.4.4 capabilityInvocation §

A DID document MAY include an capabilityInvocation property.

capabilityInvocation
The associated value MUST be an ordered set of one or more verification methods. Each
verification method MAY be embedded or referenced.

NOTE: Uses of capabilityInvocation

It is the responsibility of a verifier to ensure that the verification method used when presenting a
capability is invoked and is associated with the capabilityInvocation property. An example
of when this property is useful is when a DID subject chooses to invoke their capability to start a
vehicle through the combined usage of a verification method and the StartCar capability. In this
example, the vehicle would be the verifier and would need to verify that the verification method
exists in the capabilityInvocation property.

Example:

EXAMPLE 17: Capability invocation property containing two verification methods

{
 "@context": "https://www.w3.org/ns/did/v1", "id":
 "did:example:123456789abcdefghi",
 ...
 "capabilityInvocation: [
 // this method can be used to invoke capabilities as did:...fghi
 "did:example:123456789abcdefghi#keys-1",
 // this method is *only* authorized for capability invocation usage, i
 // be used for any other verification relationship, so its full descri
 // embedded here rather than using only a reference
 {
 "id": "did:example:123456789abcdefghi#keys-2",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }
],
 ...
}

5.4.5 capabilityDelegation §

https://infra.spec.whatwg.org/#ordered-set

The capabilityDelegation property is used to express a verification relationship which an entity
can use to grant capabilities as the DID subject or on behalf of the DID subject to other capability
invokers. The verifier of a capabilityDelegation attempt can check the validity of a capability to
grant invocation of a capability by checking if the verification method used with the proof is contained
in the capabilityDelegation section of the DID Document.

A DID document MAY include an capabilityDelegation property.

capabilityDelegation
The associated value MUST be an ordered set of one or more verification methods. Each
verification method MAY be embedded or referenced.

NOTE: Uses of capabilityDelegation

It is up to a verifier to validate that the verification method used when presenting a capability is
valid and is associated with the capabilityDelegation property. An example of when this
property is useful is when a DID Subject chooses to grant their capability to start a vehicle through
the combined usage of a verification method and the StartCar capability to a capability invoker.

Example:

https://infra.spec.whatwg.org/#ordered-set

Service endpoints are used in DID documents to express ways of communicating with the DID subject
or associated entities. Services listed in the DID document can contain information about privacy
preserving messaging services, or more public information, such as social media accounts, personal
websites, and email addresses although this is discouraged. See § 10.1 Keep Personally-Identifiable
Information (PII) Private for additional details. The metadata associated with services are often
service-specific. For example, the metadata associated with an encrypted messaging service can
express how to initiate the encrypted link before messaging begins.

Pointers to services are expressed using the service property. Each service has its own id and type
properties, as well as a serviceEndpoint property with a URI or a set of other properties describing
the service.

One of the primary purposes of a DID document is to enable discovery of service endpoints. A service
endpoint can be any type of service the DID subject wants to advertise, including decentralized
identity management services for further discovery, authentication, authorization, or interaction.

A DID document MAY include a service property.

EXAMPLE 18: Capability Delegation property containing two verification methods

{
 "@context": "https://www.w3.org/ns/did/v1", "id":
 "did:example:123456789abcdefghi",
 ...
 "capabilityDelegation": [
 // this method can be used to perform capability delegation as did:...
 "did:example:123456789abcdefghi#keys-1",
 // this method is *only* authorized for granting capabilities it may n
 // be used for any other verification relationship, so its full descri
 // embedded here rather than using only a reference
 {
 "id": "did:example:123456789abcdefghi#keys-2",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }
],
 ...
}

5.5 Service Endpoints §

service
If a DID document includes a service property, the value of the property SHOULD be an
unordered set of service endpoints, where each service endpoint is described by a set of
properties. Each service endpoint MUST have id, type, and serviceEndpoint properties, and
MAY include additional properties.

The value of the id property MUST be a URI. The value of service MUST NOT contain
multiple entries with the same id. In this case, a DID document processor MUST produce an
error.

The value of the serviceEndpoint property MUST be a valid URI conforming to [RFC3986]
and normalized according to the rules in section 6 of [RFC3986] and to any normalization rules
in its applicable URI scheme specification, OR a set of properties which describe the service
endpoint further.

It is expected that the service endpoint protocol is published in an open standard specification.

EXAMPLE 19: Various service endpoints

{
 "service": [{
 "id": "did:example:123456789abcdefghi#openid",
 "type": "OpenIdConnectVersion1.0Service",
 "serviceEndpoint": "https://openid.example.com/"
 }, {
 "id": "did:example:123456789abcdefghi#vcr",
 "type": "CredentialRepositoryService",
 "serviceEndpoint": "https://repository.example.com/service/8377464"
 }, {
 "id": "did:example:123456789abcdefghi#xdi",
 "type": "XdiService",
 "serviceEndpoint": "https://xdi.example.com/8377464"
 }, {
 "id": "did:example:123456789abcdefghi#agent",
 "type": "AgentService",
 "serviceEndpoint": "https://agent.example.com/8377464"
 }, {
 "id": "did:example:123456789abcdefghi#hub",
 "type": "IdentityHub",
 "verificationMethod": "did:example:123456789abcdefghi#key-1",
 "serviceEndpoint": {
 "@context": "https://schema.identity.foundation/hub",
 "type": "UserHubEndpoint",
 "instances": ["did:example:456", "did:example:789"]
 }
 }, {
 "id": "did:example:123456789abcdefghi#messages",
 "type": "MessagingService",
 "serviceEndpoint": "https://example.com/messages/8377464"
 }, {
 "id": "did:example:123456789abcdefghi#inbox",
 "type": "SocialWebInboxService",
 "serviceEndpoint": "https://social.example.com/83hfh37dj",
 "description": "My public social inbox",
 "spamCost": {
 "amount": "0.50",
 "currency": "USD"
 }
 }, {
 "id": "did:example:123456789abcdefghi#authpush",
 "type": "DidAuthPushModeVersion1",

For more information about security considerations regarding authentication service endpoints see
Sections § 7.1 Method Schemes and § 5.4.1 authentication.

All concrete representations of a DID document MUST be serialized using a deterministic mapping
that is able to be unambiguously parsed into the data model defined in this specification. All
serialization methods MUST define rules for the bidirectional translation of a DID document both into
and out of the representation in question. As a consequence, translation between any two
representations MUST be done by parsing the source format into a DID document model (described in
Sections § 4. Data Model and § 5. Core Properties) and then serializing the DID document model into
the target representation. An implementation MUST NOT convert between representations without first
parsing to a DID document model.

Although syntactic mappings are provided for JSON, JSON-LD, and CBOR here, applications and
services MAY use any other data representation syntax that is capable of expressing the data model,
such as XML or YAML.

Producers MUST indicate which representation of a document has been used via a media type in the
document's metadata. Consumers MUST determine which representation a document is in via the
content-type DID resolver metadata field. (See § 8.1 DID Resolution). Consumers MUST NOT
determine the representation of a document through its content alone.

ISSUE 203: Define DID Document Metadata

This requirement depends on the return of DID document metadata that still needs to be defined by
this specification. Once defined, that should be linked from here.

The production and consumption rules in this section apply to all implementations seeking to be fully
compatible with independent implementations of the specification. Deployments of this specification
MAY use a custom agreed-upon representation, including localized rules for handling properties not
listed in the registry. See section § 4.3 Extensibility for more information.

 "serviceEndpoint": "http://auth.example.com/did:example:123456789abcde
 }]
}

6. Core Representations §

metadata pending close

https://github.com/w3c/did-core/issues/203
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22metadata%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22

ISSUE 207: Add section on extensibility and conformance

A link to a section on extensibility and conformance as it applies to data representations should be
added here once that section has been written.

When producing and consuming DID documents that are in plain JSON (as indicated by a content-
type of application/did+json in the resolver metadata), the following rules MUST be followed.

A DID document MUST be a single JSON object conforming to [RFC8259]. All top-level properties
of the DID document MUST be represented by using the property name as the name of the member of
the JSON object. The values of properties of the data model described in Section § 4. Data Model,
including all extensions, MUST be encoded in JSON [RFC8259] by mapping property values to JSON
types as follows:

Numeric values representable as IEEE754 MUST be represented as a Number type.

Boolean values MUST be represented as a Boolean literal.

Sequence value MUST be represented as an Array type.

Unordered sets of values MUST be represented as an Array type.

Sets of properties MUST be represented as an Object type.

Empty values MUST be represented as a null literal.

Other values MUST be represented as a String type.

ISSUE 204: Define terminology for properties and values

An "empty" value is not specified by this document. It seems to imply a null value, but this is
unclear.

Implementers producing JSON are advised to ensure that their algorithms are aligned with the JSON
serialization rules in the [INFRA] specification.

All properties of the DID document MUST be included in the root object. Properties MAY define
additional data sub structures subject to the value representation rules in the list above.

editorial extensibility pending close

6.1 JSON §

6.1.1 Production §

PR exists editorial

https://github.com/w3c/did-core/issues/207
https://tools.ietf.org/html/rfc8259#section-4
https://tools.ietf.org/html/rfc8259#section-6
https://tools.ietf.org/html/rfc8259#section-3
https://tools.ietf.org/html/rfc8259#section-5
https://tools.ietf.org/html/rfc8259#section-5
https://tools.ietf.org/html/rfc8259#section-4
https://tools.ietf.org/html/rfc8259#section-3
https://tools.ietf.org/html/rfc8259#section-7
https://github.com/w3c/did-core/issues/204
https://infra.spec.whatwg.org/#json
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22

The member name @context MUST NOT be used as this property is reserved for JSON-LD
producers.

ISSUE 204: Define terminology for properties and values

In this section and we use the term "property name" to refer to the string that represents the
property itself, but this specification still needs to define a concrete term for such aspects of a
property of a DID document. We also need a concrete term for "the document itself" as opposed to
"the collection or properties of the document".

The top-level element MUST be a JSON object. Any other data type at the top level is an error and
MUST be rejected. The top-level JSON object represents the DID document, and all members of this
object are properties of the DID document. The object member name is the property name, and the
member value is interpreted as follows:

Number types MUST interpreted as numeric values representable as IEEE754.

Boolean literals MUST be interpreted as a Boolean value.

An Array type MUST be interpreted as a Sequence or Unordered set, depending on the definition
of the property for this value.

An Object type MUST be interpreted as a sets of properties.

A null literal MUST be interpreted as an Empty value.

String types MUST be interpreted as Strings, which may be further parsed depending on the
definition of the property for this value into more specific data types such as URIs, date stamps,
or other values.

Implementers consuming JSON are advised to ensure that their algorithms are aligned with the JSON
consumption rules in the [INFRA] specification.

ISSUE 204: Define terminology for properties and values

An "empty" value is not specified by this document. It seems to imply a null value, but this is
unclear.

The value of the @context object member MUST be ignored as this is reserved for JSON-LD
consumers.

6.1.2 Consumption §

PR exists editorial

PR exists editorial

https://github.com/w3c/did-core/issues/204
https://tools.ietf.org/html/rfc8259#section-6
https://tools.ietf.org/html/rfc8259#section-3
https://tools.ietf.org/html/rfc8259#section-5
https://tools.ietf.org/html/rfc8259#section-4
https://tools.ietf.org/html/rfc8259#section-3
https://tools.ietf.org/html/rfc8259#section-7
https://infra.spec.whatwg.org/#convert-a-json-derived-javascript-value-to-an-infra-value
https://github.com/w3c/did-core/issues/204
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22

Unknown object member names MUST be ignored as unknown properties.

ISSUE 205: How to treat unknown properties

This specification needs to define clear and consistent rules for how to handle unknown data
members on consumption, and this section needs to be updated with that decision.

[JSON-LD] is a JSON-based format used to serialize Linked Data.

When producing and consuming DID documents that are in JSON-LD (as indicated by a content-
type of application/did+ld+json in the resolver metadata), the following rules MUST be
followed.

The @id and @type keywords are aliased to id and type respectively, enabling developers to
use this specification as idiomatic JSON.

Even though JSON-LD allows any IRI as node identifiers, DID documents are explicitly
restricted to only describe DIDs. This means that the value of id that refers to the DID subject
MUST be a valid DID and not any other kind of IRI.

Data types, such as integers, dates, units of measure, and URLs, are automatically typed to
provide stronger type guarantees for use cases that require them.

The DID document is serialized following the rules in the JSON processor, with one addition: DID
documents MUST include the @context property.

@context
The value of the @context property MUST be one or more URIs, where the value of the first
URI is https://www.w3.org/ns/did/v1. All members of the @context property SHOULD
exist in the DID specification registries in order to achieve interoperability across different
representations. If a member does not exist in the DID specification registries, then the DID
Document will not be interoperable across representations.

discuss extensibility

6.2 JSON-LD §

6.2.1 Production §

https://github.com/w3c/did-core/issues/205
http://www.w3.org/TR/ld-glossary/#linked-data
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22

ISSUE 202: JSON-LD Contexts in Registry

This specification defines globally interoperable documents, and the requirement that the context
value be in the verifiable data registry means that different JSON-LD processors can consume the
document without having to dereference anything in the context field. However, a pair of
producers and consumers can have local extension agreements. This needs to be clarified in a
section on extensibility and linked here when available.

The top-level element MUST be a JSON object. Any other data type at the top level is an error and
MUST be rejected. This top-level JSON object is interpreted using JSON-LD processing under the
rules of the defined @context fields.

@context
The value of the @context property MUST be one or more URIs, where the value of the first
URI is https://www.w3.org/ns/did/v1. If more than one URI is provided, the URIs MUST
be interpreted as an ordered set. It is RECOMMENDED that dereferencing each URI results in a
document containing machine-readable information about the context. To enable interoperability
with other representations, URLs registered in the DID Specification Registries [DID-SPEC-
REGISTRIES] referring to JSON-LD Contexts SHOULD be associated with a cryptographic hash
of the content of the JSON-LD Context. This ensures that the interpretation of the information by
JSON-LD consumers will be the same as interpretations over other representations by other
consumers that rely on the DID Specification Registries [DID-SPEC-REGISTRIES].

Unknown object member names MUST be ignored as unknown properties.

ISSUE 205: How to treat unknown properties

This specification needs to define clear and consistent rules for how to handle unknown data
members on consumption, and this section needs to be updated with that decision.

Like Javascript Object Notation (JSON) [RFC8259], Concise Binary Object Representation (CBOR)
[RFC7049] defines a set of formatting rules for the portable representation of structured data. CBOR is
a more concise, machine-readable, language-independent data interchange format that is self-
describing and has built-in semantics for interoperability. With specific constraints, CBOR can support

PR exists extensibility

6.2.2 Consumption §

discuss extensibility

6.3 CBOR §

https://github.com/w3c/did-core/issues/202
https://github.com/w3c/did-core/issues/205
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22

all JSON data types (including JSON-LD) for translation between the DID document model (described
in Data Model and DID Documents) and other core representations.

Concise Data Definition Language (CDDL) [RFC8610] is a notation used to express Concise Binary
Object Representation (CBOR), and by extension JSON Data Structures. The following notation
expresses the DID Document model in CBOR representation with specific constraints for deterministic
mappings between other core representations.

EXAMPLE 20: DID Document data model for CBOR expressed in CDDL notation

DID-document = {
 ? @context : uri
 id : did
 ? publicKey : [* publicKey]
 ? authentication : [*did // *publicKey // *tstr]
 ? service : [+ service]
 ? controller : did / [*did]
 ? created : time
 ? updated : time
 proof : any
}

publicKey = {
 id : did
 type : text
 controller : uri
}

did = tstr .pcre "^did\\:(?<method-name>[a-z0-9]{2,})\\:(?<method-specific

did-url = tstr .pcre "^did\\:(?<method-name>[a-z0-9]{2,})\\:(?<method-spe

service = {
 id : did-url
 type : text
 serviceEndpoint : uri
 ? description : text
 * tstr => any
}

6.3.1 Production §

When producing DID Documents that are represented as CBOR, in addition to the suggestions in
section 3.9 of the CBOR [RFC7049] specification for deterministic mappings, the following
constraints of the DID Document model MUST be followed:

Map keys MUST be strings.

Integer encoding MUST be as short as possible.

The expression of lengths in CBOR major types 2 through 5 MUST be as short as possible.

All floating point values MUST be encoded as 64-bits, even for integral values.

EXAMPLE 21: An example DID Document represented as contrained CBOR and exported in
diagnostic annotation mode for easy readibility

a7 # map(7)
62 # text(2)
 6964 # "id"
78 40 # text(64)
 6469643a6578616d706c653a31324433 # "did:example:12D3"
 4b6f6f574d4864727a6377706a626472 # "KooWMHdrzcwpjbdr"
 5a733547477145524176636771583362 # "Zs5GGqERAvcgqX3b"
 3564707550745061396f743639796577 # "5dpuPtPa9ot69yew"
65 # text(5)
 70726f6f66 # "proof"
a4 # map(4)
 64 # text(4)
 74797065 # "type"
 74 # text(20)
 656432353531395369676e617475726532303138 # "ed25519Signatur
 67 # text(7)
 63726561746564 # "created"
 74 # text(20)
 323032302d30352d30315430333a30303a30325a # "2020-05-01T03:0
 67 # text(7)
 63726561746f72 # "creator"
 78 8c # text(140)
 6469643a6578616d706c653a31324433 # "did:example:12D
 4b6f6f574d4864727a6377706a626472 # "KooWMHdrzcwpjbd
 5a733547477145524176636771583362 # "Zs5GGqERAvcgqX3
 3564707550745061396f743639796577 # "5dpuPtPa9ot69ye
 3b206578616d706c653a6b65793d6964 # "; example:key=i
 3d626166797265696375627478357771 # "=bafyreicubtx5w
 6f336e6f73633463617a726b63746668 # "o3nosc4cazrkctf
 776436726577657a6770776f65347377 # "wd6rewezgpwoe4s
 69726c733465626468733269 # "irls4ebdhs2i"
 6e # text(14)
 7369676e617475726556616c7565 # "signatureValue"
 78 58 # text(88)
 6f3972364c78676f474e38466f616565 # "o9r6LxgoGN8Foae
 554136456444637631324776447a4645 # "UA6EdDcv12GvDzF
 6d43676a577a76707572325953517941 # "mCgjWzvpur2YSQy
 3857327230535357554b2b6e4835744d # "8W2r0SSWUK+nH5t
 717a61464c756e3677775a31456f7433 # "qzaFLun6wwZ1Eot
 37616d4744673d3d # "7amGDg=="
67 # text(7)

 63726561746564 # "created"
74 # text(20)
 323031382d31322d30315430333a30303a30305a # "2018-12-01T03:00:
67 # text(7)
 75706461746564 # "updated"
74 # text(20)
 323032302d30352d30315430333a30303a30305a # "2020-05-01T03:00:
68 # text(8)
 40636f6e74657874 # "@context"
78 1c # text(28)
 68747470733a2f2f7777772e77332e6f # "https://www.w3.o"
 72672f6e732f6469642f7631 # "rg/ns/did/v1"
69 # text(9)
 7075626c69634b6579 # "verificationMetho
81 # array(1)
 a5 # map(5)
 62 # text(2)
 6964 # "id"
 78 85 # text(133)
 6261667972656963756274783577716f # "bafyreicubtx5
 336e6f73633463617a726b6374666877 # "3nosc4cazrkct
 6436726577657a6770776f6534737769 # "d6rewezgpwoe4
 726c7334656264687332693b6578616d # "rls4ebdhs2i;e
 706c653a6b65793d6964626166797265 # "ple:key=idbaf
 6963756274783577716f336e6f736334 # "icubtx5wqo3no
 63617a726b6374666877643672657765 # "cazrkctfhwd6r
 7a6770776f6534737769726c73346562 # "zgpwoe4swirls
 6468733269 # "dhs2i"
 64 # text(4)
 74797065 # "type"
 6e # text(14)
 45644473615075626c69634b6579 # "EdDsaPublicKe
 65 # text(5)
 6375727665 # "curve"
 67 # text(7)
 65643235353139 # "ed25519"
 67 # text(7)
 65787069726573 # "expires"
 74 # text(20)
 323031392d31322d30315430333a30303a30305a # "2019-12-01T03
 6f # text(15)
 7075626c69634b6579426173653634 # "publicKeyBase
 78 2c # text(44)
 716d7a3774704c4e4b4b4b646c376344 # "qmz7tpLNKKKdl

When consuming DID Documents that are represented as CBOR, in addition to the suggestions in
section 3.9 of the CBOR [RFC7049] specification for deterministic mappings the following constraints
of the DID Document model MUST be followed:

The keys in every map must be sorted lowest value to highest. Sorting is performed on the bytes
of the representation of the keys.

Indefinite-length items must be made into definite-length items.

In CBOR, one point of extensibility is with the use of CBOR tags. [RFC7049] defines a basic set of
data types, as well as a tagging mechanism that enables extending the set of data types supported via
the CBOR Tag Registry. This allows for tags to enhance the semantic description of the data that
follows.

DagCBOR is a further restricted subset of CBOR for representing the DID Document as a Directed
Acyclic Graph model using canonical CBOR encoding as noted above with additional constraints.

 375062656a4469425670374f4e706d5a # "7PbejDiBVp7ON
 62666d633763454b396d673d # "bfmc7cEK9mg="
6e # text(14)
 61757468656e7469636174696f6e # "authentication"
81 # array(1)
 78 83 # text(131)
 6469643a6578616d706c653a31324433 # "did:example:12D
 4b6f6f574d4864727a6377706a626472 # "KooWMHdrzcwpjbd
 5a733547477145524176636771583362 # "Zs5GGqERAvcgqX3
 3564707550745061396f743639796577 # "5dpuPtPa9ot69ye
 3b6b65792d69643d6261667972656963 # ";key-id=bafyrei
 756274783577716f336e6f7363346361 # "ubtx5wqo3nosc4c
 7a726b63746668776436726577657a67 # "zrkctfhwd6rewez
 70776f6534737769726c733465626468 # "pwoe4swirls4ebd
 733269 # "s2i"

6.3.2 Consumption §

6.3.3 CBOR Extensibility §

6.3.3.1 DagCBOR §

https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

DagCBOR requires that there exist a single way of encoding any given object, and that encoded forms
contain no superfluous data that may be ignored or lost in a round-trip decode/encode. When
producing and consuming DID Documents representing in DagCBOR the following rules MUST be
followed

Use no CBOR tags other than the CID tag (42)

A DID Document proof may be constructed using CBOR semantic tagging, such as tag 98 for CBOR
Object Signing and Encryption (COSE) [RFC8152]

EXAMPLE 22: DID Document as DagCBOR same as the previous example, but serialized to
JSON for easy readability

{ "@context": "https://www.w3.org/ns/did/v1",
 "authentication": [
 "did:example:12D3KooWMHdrzcwpjbdrZs5GGqERAvcgqX3b5dpuPtPa9ot69yew;key-
],
 "created": "2018-12-01T03:00:00Z",
 "id": "did:example:12D3KooWMHdrzcwpjbdrZs5GGqERAvcgqX3b5dpuPtPa9ot69yew"
 "proof": {
 "created": "2020-05-01T03:00:02Z",
 "creator": "did:example:12D3KooWMHdrzcwpjbdrZs5GGqERAvcgqX3b5dpuPtPa9o
 "signatureValue": "o9r6LxgoGN8FoaeeUA6EdDcv12GvDzFEmCgjWzvpur2YSQyA8W2
 "type": "ed25519Signature2018"
 },
 "verificationMethod": [
 {
 "curve": "ed25519",
 "expires": "2019-12-01T03:00:00Z",
 "id": "bafyreicubtx5wqo3nosc4cazrkctfhwd6rewezgpwoe4swirls4ebdhs2i;e
 "publicKeyBase64": "qmz7tpLNKKKdl7cD7PbejDiBVp7ONpmZbfmc7cEK9mg=",
 "type": "EdDsaPublicKey"
 }
],
 "updated": "2020-05-01T03:00:00Z"
}

6.3.3.2 COSE signatures §

EXAMPLE 23: An example extensibility of COSE signature of CBOR using tag 98 and 42
expressed in diagnostic annotated form

D8 62 # tag(98)
67 # text(7)
 7061796c6f6164 # "payload"
d8 2a # tag(42)
 58 25 # bytes(37)
 00017112206c8fdc5c3d2302dda95034 # "\x00\x01q\x12 l\x8f\
 f9de57a8591918ecb7d7789387c547f7 # "\xf9\xdeW\xa8Y\x19\x
 a89d05e72f # "\xa8\x9d\x05\xe7/"
69 # text(9)
 70726f746563746564 # "protected"
a0 # map(0)
6a # text(10)
 7369676e617475726573 # "signatures"
81 # array(1)
 a3 # map(3)
 69 # text(9)
 70726f746563746564 # "protected"
 66 # text(6)
 613130313236 # "a10126"
 69 # text(9)
 7369676e6174757265 # "signature"
 78 80 # text(128)
 65326165616664343064363964313964 # "e2aeafd40d69d19d"
 66653665353230373763356437666634 # "fe6e52077c5d7ff4"
 65343038323832636265666235643036 # "e408282cbefb5d06"
 63626634313461663265313964393832 # "cbf414af2e19d982"
 61633435616339386238353434633930 # "ac45ac98b8544c90"
 38623435303764653165393062373137 # "8b4507de1e90b717"
 63336433343831366665393236613262 # "c3d34816fe926a2b"
 39386635336166643266613066333061 # "98f53afd2fa0f30a"
 6b # text(11)
 756e70726f746563746564 # "unprotected"
 a1 # map(1)
 63 # text(3)
 6b6964 # "kid"
 78 85 # text(133)
 6469643a697069643a313244334b6f6f # "did:ipid:12D3Koo
 574d4864727a6377706a6264725a7335 # "WMHdrzcwpjbdrZs5
 47477145524176636771583362356470 # "GGqERAvcgqX3b5dp
 7550745061396f7436397965773b6970 # "uPtPa9ot69yew;ip
 69643a6b65792d69643d626166797265 # "id:key-id=bafyre

DID methods provide the means to implement this specification on different verifiable data registries.
New DID methods are defined in their own specifications, so that interoperability between different
implementations of the same DID method is ensured. This section specifies the requirements on any
DID method, which are met by the DID method's associated specification.

For adding properties to a DID document which are specific to a particular DID method, see § 4.3
Extensibility.

A DID method specification MUST define exactly one method-specific DID scheme, identified by
exactly one method name (see the method-name rule in Section § 3.1 DID Syntax).

The authors of a new DID method specification SHOULD use a method name that is unique among all
DID method names known to them at the time of publication.

The method name SHOULD be five characters or less.

NOTE: Unique DID method names

Because there is no central authority for allocating or approving DID method names, there is no
way to know for certain if a specific DID method name is unique. To help with this challenge, a
non-authoritative list of known DID method names and their associated specifications is
maintained in the DID Methods Registry, which is part of [DID-SPEC-REGISTRIES].

Authors of new DID method specifications are encouraged to add their method names to the DID
Method Registry so that other implementors and members of the community have a place to see an
overview of existing DID methods.

 6963756274783577716f336e6f736334 # "icubtx5wqo3nosc4
 63617a726b6374666877643672657765 # "cazrkctfhwd6rewe
 7a6770776f6534737769726c73346562 # "zgpwoe4swirls4eb
 6468733269 # "dhs2i"
6b # text(11)
 756e70726f746563746564 # "unprotected"
a0 # tag(0)

7. Methods §

7.1 Method Schemes §

The DID method specification MUST specify how to generate the method-specific-id component
of a DID.

The method-specific-id value MUST be able to be generated without the use of a centralized
registry service.

The method-specific-id value SHOULD be globally unique by itself. Any DID generated by the
method MUST be globally unique.

If needed, a method-specific DID scheme MAY define multiple method-specific-id formats. It is
RECOMMENDED that a method-specific DID scheme define as few method-specific-id formats
as possible.

The method-specific-id format MAY include colons. The use of colons MUST comply
syntactically with the method-specific-id ABNF rule.

NOTE: Colons in method-specific-id

The meaning of colons in the method-specific-id is entirely method-specific. Colons might be
used by DID methods for establishing hierarchically partitioned namespaces, for identifying
specific instances or parts of the verifiable data registry, or for other purposes. Implementers are
advised to avoid assuming any meanings or behaviors associated with a colon that are generically
applicable to all DID methods.

This section sets out the requirements for DID method specifications with regards to operations that
can be performed on a DID document.

Determining the authority of a party to carry out the operations is method-specific. For example, a
DID method MAY:

make use of the controller property.

use the verification methods listed under authentication to decide whether an
update/deactivate operation is allowed.

use other constructs in the DID Document to decide this, for example, a verification method
specified under capabilityInvocation could be used to verify the invocation of a capability
to update the DID Document.

not use the DID Document at all to decide this, but have rules that are "built into" the method.

7.2 Method Operations §

Each DID method MUST define how authorization is implemented, including any necessary
cryptographic operations.

The DID method specification MUST specify how a DID controller creates a DID and its associated
DID document on the verifiable data registry, including all cryptographic operations necessary to
establish proof of control.

The DID method specification MUST specify how a DID resolver uses a DID to request a DID
document from the verifiable data registry, including how the DID resolver can verify the authenticity
of the response.

The DID method specification MUST specify how a DID controller can update a DID document on the
verifiable data registry, including all cryptographic operations necessary to establish proof of control,
or state that updates are not possible.

An update to a DID is any change, after creation, in the data used to produce a DID document. DID
Method implementers are responsible for defining what constitutes an update, and what properties of
the DID document are supported by a given DID method. For example, an update operation which
replaces key material without changing it could be a valid update that does not result in changes to the
DID document.

The DID method specification MUST specify how a DID controller can deactivate a DID on the
verifiable data registry, including all cryptographic operations necessary to establish proof of
deactivation, or state that deactivation is not possible.

7.2.1 Create §

7.2.2 Read/Verify §

7.2.3 Update §

7.2.4 Deactivate §

7.3 Security Requirements §

DID method specifications MUST include their own Security Considerations sections. This section
MUST consider all the requirements mentioned in section 5 of [RFC3552] (page 27) for the DID
operations defined in the specification.

At least the following forms of attack MUST be considered: eavesdropping, replay, message insertion,
deletion, modification, and man-in-the-middle. Potential denial of service attacks MUST be identified
as well.

This section MUST discuss, per Section 5 of [RFC3552], residual risks (such as the risks from
compromise in a related protocol, incorrect implementation, or cipher) after threat mitigation was
deployed.

This section MUST provide integrity protection and update authentication for all operations required
by Section § 7.2 Method Operations.

If the technology involves authentication, particularly user-host authentication, the security of the
authentication method MUST be clearly specified.

DID methods MUST discuss the policy mechanism by which DIDs are proven to be uniquely assigned.
A DID fits the functional definition of a URN, as defined in [RFC8141]. That is, a DID is a persistent
identifier that is assigned once to a resource and never reassigned to a different resource. This is
particularly important in a security context because a DID might be used to identify a specific party
subject to a specific set of authorization rights.

Method-specific endpoint authentication MUST be discussed. Where DID methods make use of DLTs
with varying network topology, sometimes offered as light node or thin client implementations to
reduce required computing resources, the security assumptions of the topology available to
implementations of the DID method MUST be discussed.

If the protocol incorporates cryptographic protection mechanisms, the DID method specification
MUST clearly indicate which portions of the data are protected and what the protections are, and
SHOULD give an indication to what sorts of attacks the cryptographic protection is susceptible. For
example, integrity only, confidentiality, endpoint authentication, and so on.

Data which is to be held secret (keying material, random seeds, and so on) SHOULD be clearly
labeled.

Where DID methods make use of peer-to-peer computing resources, such as with all known DLTs, the
expected burdens of those resources SHOULD be discussed in relation to denial of service.

DID methods that introduce new authentication service endpoint types (see Section § 5.5 Service
Endpoints) SHOULD consider the security requirements of the supported authentication protocol.

https://en.bitcoin.it/wiki/Thin_Client_Security

DID method specifications MUST include their own Privacy Considerations sections, if only to point
to § 10. Privacy Considerations .

The DID method specification's Privacy Considerations section MUST discuss any subsection of
section 5 of [RFC6973] that could apply in a method-specific manner. The subsections to consider are:
surveillance, stored data compromise, unsolicited traffic, misattribution, correlation, identification,
secondary use, disclosure, exclusion.

This section defines the inputs and outputs of DID resolution and DID URL dereferencing. These
functions are defined in an abstract way. Their exact implementation is out of scope for this
specification, but some considerations for implementors are discussed in [DID-RESOLUTION].

All conformant DID resolvers MUST implement the DID resolution functions for at least one DID
method and MUST be able to return a DID document in at least one conformant representation.

The DID resolution functions resolve a DID into a DID document by using the "Read" operation of the
applicable DID method. (See § 7.2.2 Read/Verify .) The details of how this process is accomplished
are outside the scope of this specification, but all conformant implementations MUST implement two
functions which have the following abstract forms:

resolve (did, did-resolution-input-metadata)
 -> (did-resolution-metadata, did-document, did-document-metadata)

resolveStream (did, did-resolution-input-metadata)
 -> (did-resolution-metadata, did-document-stream, did-document-
metadata)

The input variables of these functions MUST be as follows:

did
A conformant DID as a single string. This is the DID to resolve. This input is REQUIRED.

did-resolution-input-metadata
A metadata structure consisting of input options to the resolve and resolveStream functions
in addition to the did itself. Properties defined by this specification are in § 8.1.1 DID Resolution

7.4 Privacy Requirements §

8. Resolution §

8.1 DID Resolution §

Input Metadata Properties . This input is REQUIRED, but the structure MAY be empty.

The output variables of these functions MUST be as follows:

did-resolution-metadata
A metadata structure consisting of values relating to the results of the DID resolution process.
This structure is REQUIRED and MUST NOT be empty. This metadata typically changes between
invocations of the resolve and resolveStream functions as it represents data about the
resolution process itself. Properties defined by this specification are in § 8.1.2 DID Resolution
Metadata Properties . If the resolution is successful, and if the resolveStream function was
called, this structure MUST contain a content-type property containing the mime-type of the
did-document-stream in this result. If the resolution is not successful, this structure MUST
contain an error property describing the error.

did-document
If the resolution is successful, and if the resolve function was called, this MUST be a DID
document conforming to the abstract data model. If the resolution is unsuccessful, this value
MUST be empty.

did-document-stream
If the resolution is successful, and if the resolveStream function was called, this MUST be a
byte stream of the resolved DID document in one of the conformant representations. The byte
stream MAY then be parsed by the caller of the resolveStream function into a DID document
abstract data model, which can in turn be validated and processed. If the resolution is
unsuccessful, this value MUST be an empty stream.

did-document-metadata
If the resolution is successful, this MUST be a metadata structure. This structure contains
metadata about the DID document contained in the did-document or did-document-stream.
This metadata typically does not change between invocations of the resolve function unless the
DID document changes, as it represents data about the DID document. If the resolution is
unsuccessful, this output MUST be an empty metadata structure. Properties defined by this
specification are in § 8.1.3 DID Document Metadata Properties .

DID resolver implementations MUST NOT alter the signature of these functions in any way. DID
resolver implementations MAY map the resolve and resolveStream functions to a method-specific
internal function to perform the actual DID resolution process. DID resolver implementations MAY
implement and expose additional functions with different signatures in addition to the resolve
function specified here.

8.1.1 DID Resolution Input Metadata Properties §

The possible properties within this structure and their possible values are defined by [DID-SPEC-
REGISTRIES]. This specification defines the following common properties.

accept
The MIME type of the caller's preferred representation of the DID document. The DID resolver
implementation SHOULD use this value to determine the representation contained in the returned
did-document-stream if such a representation is supported and available. This property is
OPTIONAL. It is only used if the resolveStream function is called and MUST be ignored if the
resolve function is called.

The possible properties within this structure and their possible values are defined by [DID-SPEC-
REGISTRIES]. This specification defines the following common properties.

content-type
The MIME type of the returned did-document-stream. This property is REQUIRED if
resolution is successful and if the resolveStream function was called. It MUST NOT be present
if the resolve function was called. The value of this property MUST be the MIME type of one
of the conformant representations. The caller of the resolveStream function MUST use this
value when determining how to parse and process the did-document-stream returned by this
function into a DID document abstract data model.

error
The error code from the resolution process. This property is REQUIRED when there is an error in
the resolution process. The value of this property is a single keyword string. The possible
property values of this field are defined by [DID-SPEC-REGISTRIES]. This specification defines
the following error values:

invalid-did
The DID supplied to the DID resolution function does not conform to valid syntax. (See
§ 3.1 DID Syntax.)

unauthorized
The caller is not authorized to resolve this DID with this DID resolver.

not-found
The DID resolver was unable to return the DID document resulting from this resolution
request.

8.1.2 DID Resolution Metadata Properties §

8.1.3 DID Document Metadata Properties §

The possible properties within this structure and their possible values are defined by [DID-SPEC-
REGISTRIES]. This specification defines the following common properties.

created
DID document metadata SHOULD include a created property to indicate the timestamp of the
Create operation. This property MAY not be supported by a given DID method. The value of the
property MUST be a valid XML datetime value, as defined in section 3.3.7 of W3C XML Schema
Definition Language (XSD) 1.1 Part 2: Datatypes [XMLSCHEMA11-2]. This datetime value
MUST be normalized to UTC 00:00, as indicated by the trailing "Z".

updated
DID document metadata SHOULD include an updated property to indicate the timestamp of the
last Update operation. This property MAY not be supported by a given DID method. The value of
the property MUST follow the same formatting rules as the created property.

The DID URL dereferencing function dereferences a DID URL into a resource with contents
depending on the DID URL's components, including the DID method, method-specific identifier, path,
query, and fragment. This process depends on DID resolution of the DID contained in the DID URL.
The details of how this process is accomplished are outside the scope of this specification, but all
conformant implementations MUST implement a function which has the following abstract form:

dereference (did-url, did-url-dereferencing-input-metadata)
 -> (did-url-dereferencing-metadata, content-stream, content-
metadata)

The input variables of this function MUST be as follows:

did-url
A conformant DID URL as a single string. This is the DID URL to dereference. This input is
REQUIRED.

did-url-dereferencing-input-metadata
A metadata structure consisting of input options to the dereference function in addition to the
did-url itself. Properties defined by this specification are in § 8.2.1 DID URL Dereferencing
Input Metadata Properties . This input is REQUIRED, but the structure MAY be empty.

The output variables of this function MUST be as follows:

did-url-dereferencing-metadata

8.2 DID URL Dereferencing §

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/did-core/metadata-structure

A metadata structure consisting of values relating to the results of the DID URL Dereferencing
process. This structure is REQUIRED and in the case of an error in the dereferencing process, this
MUST NOT be empty. Properties defined by this specification are in § 8.2.2 DID URL
Dereferencing Metadata Properties . If the dereferencing is not successful, this structure MUST
contain an error property describing the error.

content-stream
If the dereferencing function was called and successful, this MUST contain a resource
corresponding to the DID URL. The content-stream MAY be a DID document in one of the
conformant representations obtained through the resolution process. If the dereferencing is
unsuccessful, this value MUST be empty.

content-metadata
If the dereferencing is successful, this MUST be a metadata structure, but the structure MAY be
empty. This structure contains metadata about the content-stream. If the content-stream is
a DID document, this MUST be a did-document-metadata structure as described in DID
Resolution. If the dereferencing is unsuccessful, this output MUST be an empty metadata
structure.

DID URL Dereferencing implementations MUST NOT alter the signature of these functions in any
way. DID URL Dereferencing implementations MAY map the dereference function to a method-
specific internal function to perform the actual DID URL Dereferencing process. DID URL
Dereferencing implementations MAY implement and expose additional functions with different
signatures in addition to the dereference function specified here.

The possible properties within this structure and their possible values are defined by [DID-SPEC-
REGISTRIES]. This specification defines the following common properties.

accept
The MIME type the caller prefers for content-stream. The DID URL Dereferencing
implementation SHOULD use this value to determine the representation contained in the returned
value if such a representation is supported and available. This property is OPTIONAL.

The possible properties within this structure and their possible values are defined by [DID-SPEC-
REGISTRIES]. This specification defines the following common properties.

content-type

8.2.1 DID URL Dereferencing Input Metadata Properties §

8.2.2 DID URL Dereferencing Metadata Properties §

https://www.w3.org/TR/did-core/metadata-structure
https://www.w3.org/TR/did-core/metadata-structure
https://www.w3.org/TR/did-core/metadata-structure

The MIME type of the returned content-stream. This property is OPTIONAL if dereferencing
is successful.

error
The error code from the dereferencing process. This property is REQUIRED when there is an
error in the dereferencing process. The value of this property is a single keyword string. The
possible property values of this field are defined by [DID-SPEC-REGISTRIES]. This
specification defines the following error values:

invalid-did-url
The DID URL supplied to the DID URL Dereferencing function does not conform to valid
syntax. (See § 3.2 DID URL Syntax.)

unauthorized
The caller is not authorized to dereference the given DID URL with the given DID URL
dereferencer.

not-found
The DID URL dereferencer was unable to return the content-stream resulting from this
dereferencing request.

The possible properties within this structure and their possible values are defined by [DID-SPEC-
REGISTRIES]. This specification defines the following common properties.

Input and output metadata is often involved during the DID Resolution, DID URL Dereferencing, and
other DID-related processes. The structure used to communicate this metadata MUST be a map of
properties. Each property name MUST be a string. Each property value MUST be a string, map, list,
boolean, or null. The values within any complex data structures such as maps and lists MUST be one
of these data types as well. All metadata property definitions MUST define the value type, including
any additional formats or restrictions to that value (for example, a string formatted as a date or as a
decimal integer). It is RECOMMENDED that property definitions use strings for values where
possible.

All implementations of functions that use metadata structures as either input or output MUST be able
to fully represent all data types described here in a deterministic fashion. As inputs and outputs using
metadata structures are defined in terms of data types and not their serialization, the method for
representation is internal to the implementation of the function and is out of scope of this specification.

8.2.3 DID URL Dereferencing Metadata Properties §

8.3 Metadata Structure §

https://infra.spec.whatwg.org/#maps
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#maps
https://infra.spec.whatwg.org/#lists
https://infra.spec.whatwg.org/#boolean
https://infra.spec.whatwg.org/#null

The following example demonstrates a JSON-encoded metadata structure that might be used as DID
resolution input metadata.

This example corresponds to a metadata structure of the following format:

The next example demonstrates a JSON-encoded metadata structure that might be used as DID
resolution metadata if a DID was not found.

This example corresponds to a metadata structure of the following format:

The next example demonstrates a JSON-encoded metadata structure that might be used as DID
document metadata to describe timestamps associated with the DID document.

EXAMPLE 24: JSON-encoded DID resolution input metadata example

{
 "accept": "application/did+ld+json"
}

EXAMPLE 25: DID resolution input metadata example

«[
 "accept" → "application/did+ld+json"
]»

EXAMPLE 26: JSON-encoded DID resolution metadata example

{
 "error": "not-found"
}

EXAMPLE 27: DID resolution metadata example

«[
 "error" → "not-found"
]»

This example corresponds to a metadata structure of the following format:

This section is non-normative.

NOTE: Note to implementers

During the Working Draft stage, this section focuses on security topics that should be important in
early implementations. The editors are seeking feedback on threats and threat mitigations that
should be reflected in this section or elsewhere in the spec. DIDs are designed to operate under the
general Internet threat model used by many IETF standards. We assume uncompromised
endpoints, but anticipate that messages could be read or corrupted on the network.

The DID Method Registry (see [DID-SPEC-REGISTRIES] is an informative list of DID method
names and their corresponding DID method specifications. Implementors need to bear in mind that
there is no central authority to mandate which DID method specification is to be used with any specific
DID method name, but can use the DID Method Registry to make an informed decision when
choosing which DID resolver implementations to use.

EXAMPLE 28: JSON-encoded DID document metadata example

{
 "created": "2019-03-23T06:35:22Z",
 "updated": "2023-08-10T13:40:06Z"
}

EXAMPLE 29: DID document metadata example

«[
 "created" → "2019-03-23T06:35:22Z",
 "updated" → "2023-08-10T13:40:06Z"
]»

9. Security Considerations §

9.1 Choosing DID Resolvers §

The following sections describe binding identities to DIDs and DID documents.

Signatures and verifiable timestamps allow DID documents to be cryptographically verifiable.

By itself, a verified signature on a self-signed DID document does not prove control of a DID. It only
proves that the:

DID document was not tampered with since it was timestamped.

DID controller(s) controlled the private key used for the signature at the time the timestamp was
created.

Proving control of a DID, that is, the binding between the DID and the DID document that describes it,
requires a two step process:

1. Resolving the DID to a DID document according to its DID method specification.

2. Verifying that the id property of the resulting DID document matches the DID that was resolved.

It should be noted that this process proves control of a DID and DID document regardless of whether
the DID document is signed.

Signatures on DID documents are optional. DID method specifications SHOULD explain and specify
their implementation if applicable.

There are two methods for proving control of the private key corresponding to a public key description
in the DID document: static and dynamic.

The static method is to sign the DID document with the private key. This proves control of the private
key at a time no later than the DID document was registered. If the DID document is not signed,
control of a public key described in the DID document can still be proven dynamically as follows:

1. Send a challenge message containing a public key description from the DID document and a
nonce to an appropriate service endpoint described in the DID document.

2. Verify the signature of the response message against the public key description.

9.2 Binding of Identity §

9.2.1 Proving Control of a DID and DID Document §

9.2.2 Proving Control of a Public Key §

A DID and DID document do not inherently carry any PII (personally-identifiable information). The
process of binding a DID to something in the real world, such as a person or a company, for example
with credentials with the same subject as that DID, is out of scope for this specification. For more
information, see the [VC-DATA-MODEL] instead.

If a DID document publishes a service endpoint intended for authentication or authorization of the
DID subject (see Section § 5.5 Service Endpoints), it is the responsibility of the service endpoint
provider, subject, or requesting party to comply with the requirements of the authentication protocols
supported at that service endpoint.

Non-repudiation of DIDs and DID document updates is supported under the assumption that the
subject:

Is monitoring for unauthorized updates (see Section § 9.5 Notification of DID Document Changes
).

Has had adequate opportunity to revert malicious updates according to the access control
mechanism for the DID method (see Section § 5.4.1 authentication).

Non-repudiation is further supported if timestamps are included (see Section § 8.1.3 DID Document
Metadata Properties) and the target DLT system supports timestamps.

One mitigation against unauthorized changes to a DID document is monitoring and actively notifying
the DID subject when there are changes. This is analogous to helping prevent account takeover on
conventional username/password accounts by sending password reset notifications to the email
addresses on file.

In the case of a DID, there is no intermediary registrar or account provider to generate such
notifications. However, if the verifiable data registry on which the DID is registered directly supports
change notifications, a subscription service can be offered to DID controllers. Notifications could be
sent directly to the relevant service endpoints listed in an existing DID.

9.2.3 Authentication and Verifiable Claims §

9.3 Authentication Service Endpoints §

9.4 Non-Repudiation §

9.5 Notification of DID Document Changes §

https://en.wikipedia.org/wiki/Personally_identifiable_information

If a DID controller chooses to rely on a third-party monitoring service (other than the verifiable data
registry itself), this introduces another vector of attack.

In a decentralized identifier architecture, there are no centralized authorities to enforce key or signature
expiration policies. Therefore DID resolvers and requesting parties need to validate that keys were not
expired at the time they were used. Because some use cases might have legitimate reasons why
already-expired keys can be extended, make sure a key expiration does not prevent any further use of
the key, and implementations of a resolver ought to be compatible with such extension behavior.

Section § 7.2 Method Operations specifies the DID operations to be supported by a DID method
specification, including deactivation of a DID document by replacing it with an updated DID
document. It is also up to the DID method to define how revocation of cryptographic keys might occur.
Additionally, DID method specifications are also expected to enable support for a quorum of trusted
parties to enable key recovery. Some of the facilities to do so are suggested in Section § 5.2 Control .
Not all DID method specifications will recognize control from DIDs registered using other DID
methods and they might restrict third-party control to DIDs that use the same method. Access control
and key recovery in a DID method specification can also include a time lock feature to protect against
key compromise by maintaining a second track of control for recovery. Further specification of this
type of control is a matter for future work.

DIDs achieve global uniqueness without the need for a central registration authority. This comes,
however, at the cost of human memorability. The algorithms capable of generating globally unique
identifiers automatically produce random strings of characters that have no human meaning. This
demonstrates the axiom about identifiers described in Zooko's Triangle: "human-meaningful,
decentralized, secure — pick any two".

There are of course many use cases where it is desirable to discover a DID when starting from a
human-friendly identifier. For example, a natural language name, a domain name, or a conventional
address for a DID controller, such as a mobile telephone number, email address, Twitter handle, or
blog URL. However, the problem of mapping human-friendly identifiers to DIDs (and doing so in a
way that can be verified and trusted) is outside the scope of this specification.

9.6 Key and Signature Expiration §

9.7 Key Revocation and Recovery §

9.8 The Role of Human-Friendly Identifiers §

https://en.wikipedia.org/wiki/Zooko%27s_triangle

Solutions to this problem (and there are many) should be defined in separate specifications that
reference this specification. It is strongly recommended that such specifications carefully consider the:

Numerous security attacks based on deceiving users about the true human-friendly identifier for a
target entity.

Privacy consequences of using human-friendly identifiers that are inherently correlatable,
especially if they are globally unique.

NOTE

A draft specification for discovering a DID from domain names and email addresses using DNS
lookups is available at [DNS-DID].

Many cybersecurity abuses hinge on exploiting gaps between reality and the assumptions of rational,
good-faith actors. Like any ecosystem, the DID ecosystem has some potential for this to occur.
Because this specification is focused on a data model instead of a protocol, it offers no opinion about
many aspects of how that model is put to use. However, individual DID methods might want to
consider constraints that would eliminate behaviors or semantics they do not need. The more locked
down a DID method is, while providing the same set of features, the less it can be manipulated by
malicious actors.

As an example, consider the flexibility that the data model offers with respect to updating. A single
edit to a DID document can change anything and everything except the root id property of the
document. And any individual JSON object in the data model can change all of its properties except its
id. But is it actually desirable for a service endpoint to change its type after it is defined? Or for a key
to change its value? Or would it be better to require a new id when certain fundamental properties of
an object change? Malicious takeovers of a web site often aim for an outcome where the site keeps its
identifier (the host name), but gets subtle, dangerous changes underneath. If certain properties of the
site were required by the specification to be immutable (for example, the ASN associated with its IP
address), such attacks might be much harder and more expensive to carry out, and anomaly detection
would be easier.

The notion that immutability provides some cybersecurity benefits is particularly relevant because of
caching. For DID methods tied to a global source of truth, a direct, just-in-time lookup of the latest
version of a DID document is always possible. However, it seems likely that layers of cache might
eventually sit between a DID resolver and that source of truth. If they do, believing the attributes of an
object in the DID document to have a given state, when they are actually subtly different, might invite

9.9 Immutability §

https://en.wikipedia.org/wiki/Autonomous_system_(Internet)

exploits. This is particularly true if some lookups are of a full DID document, and others are of partial
data, where the larger context is assumed.

DID documents are typically publicly available. Encryption algorithms have been known to fail due to
advances in cryptography and computing power. Implementers are advised to assume that any
encrypted data placed in a DID document might eventually be made available in clear text to the same
audience to which the encrypted data is available.

Encrypting all or parts of DID documents is not an appropriate means to protect data in the long term.
Similarly, placing encrypted data in DID documents is not an appropriate means to include personally
identifiable information.

Given the caveats above, if encrypted data is included in a DID document, implementers are advised
to not encrypt with the public keys of entities that do not wish to be correlated with the DID.

This section is non-normative.

It is critically important to apply the principles of Privacy by Design to all aspects of the decentralized
identifier architecture, because DIDs and DID documents are, by design, administered directly by the
DID controller(s). There is no registrar, hosting company, or other intermediate service provider to
recommend or apply additional privacy safeguards. The authors of this specification have applied all
seven Privacy by Design principles throughout its development. For example, privacy in this
specification is preventative not remedial, and privacy is an embedded default. Furthermore, the
decentralized identifier architecture by itself embodies principle #7, "Respect for user privacy — keep
it user-centric."

This section lists additional privacy considerations that implementers, delegates, and DID subjects
should keep in mind.

If a DID method specification is written for a public verifiable data registry where all DIDs and DID
documents are publicly available, it is critical that DID documents contain no personal data. All
personal data should be kept behind service endpoints under the control of the DID subject. Additional

9.10 Encrypted Data in DID Documents §

10. Privacy Considerations §

10.1 Keep Personally-Identifiable Information (PII) Private §

due diligence should be taken around the use of URLs in service endpoints as well to prevent leakage
of unintentional personal data or correlation within a URL of a service endpoint. For example, a URL
that contains a username is likely dangerous to include in a DID Document because the username is
likely to be human-meaningful in a way that can unintentionally reveal information that the DID
subject did not consent to sharing. With this privacy architecture, personal data can be exchanged on a
private, peer-to-peer basis using communications channels identified and secured by public key
descriptions in DID documents. This also enables DID subjects and requesting parties to implement
the GDPR right to be forgotten, because no personal data is written to an immutable distributed ledger.

Like any type of globally unique identifier, DIDs might be used for correlation. DID controllers can
mitigate this privacy risk by using pairwise unique DIDs, that is, sharing a different private DID for
every relationship. In effect, each DID acts as a pseudonym. A pseudonymous DID need only be
shared with more than one party when the DID subject explicitly authorizes correlation between those
parties. If pseudonymous DIDs are the default, then the only need for a public DID (a DID published
openly or shared with a large number of parties) is when the DID subject explicitly desires public
identification.

The anti-correlation protections of pseudonymous DIDs are easily defeated if the data in the
corresponding DID documents can be correlated. For example, using same public key descriptions or
bespoke service endpoints in multiple DID documents can provide as much correlation information as
using the same DID. Therefore the DID document for a pseudonymous DID also needs to use pairwise
unique public keys. It might seem natural to also use pairwise unique service endpoints in the DID
document for a pseudonymous DID. However, unique endpoints allow all traffic between two DIDs to
be isolated perfectly into unique buckets, where timing correlation and similar analysis is easy.
Therefore, a better strategy for endpoint privacy might be to share an endpoint among thousands or
millions of DIDs controlled by many different subjects.

When a DID subject is indistinguishable from others in the herd, privacy is available. When the act of
engaging privately with another party is by itself a recognizable flag, privacy is greatly diminished.
DIDs and DID methods need to work to improve herd privacy, particularly for those who legitimately
need it most. Choose technologies and human interfaces that default to preserving anonymity and

10.2 DID Correlation Risks and Pseudonymous DIDs §

10.3 DID Document Correlation Risks §

10.4 Herd Privacy §

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/Right_to_be_forgotten

pseudonymity. To reduce digital fingerprints, share common settings across requesting party
implementations, keep negotiated options to a minimum on wire protocols, use encrypted transport
layers, and pad messages to standard lengths.

This section is non-normative.

This section is non-normative.

See did-spec-registries for optional extensions and other verifcation method types.

NOTE

These examples are for information purposes only, it is considered a best practice to avoid using
the same verification method for multiple purposes.

11. Examples §

11.1 DID Documents §

https://en.wikipedia.org/wiki/Device_fingerprint
https://www.w3.org/TR/did-spec-registries/#verification-method-types

EXAMPLE 30: DID Document with 1 verification method type

 {
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123",
 "authentication": [
 {
 "id": "did:example:123#z6MkecaLyHuYWkayBDLw5ihndj3T1m6zKTGqau3A51
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123",
 "publicKeyBase58": "AKJP3f7BD6W4iWEQ9jwndVTCBq8ua2Utt8EEjJ6Vxsf"
 }
],
 "capabilityInvocation": [
 {
 "id": "did:example:123#z6MkhdmzFu659ZJ4XKj31vtEDmjvsi5yDZG5L7Caz6
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123",
 "publicKeyBase58": "4BWwfeqdp1obQptLLMvPNgBw48p7og1ie6Hf9p5nTpNN"
 }
],
 "capabilityDelegation": [
 {
 "id": "did:example:123#z6Mkw94ByR26zMSkNdCUi6FNRsWnc2DFEeDXyBGJ5K
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123",
 "publicKeyBase58": "Hgo9PAmfeoxHG8Mn2XHXamxnnSwPpkyBHAMNF3VyXJCL"
 }
],
 "assertionMethod": [
 {
 "id": "did:example:123#z6MkiukuAuQAE8ozxvmahnQGzApvtW7KT5XXKfojjw
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123",
 "publicKeyBase58": "5TVraf9itbKXrRvt2DSS95Gw4vqU3CHAdetoufdcKazA"
 }
]
}

EXAMPLE 31: DID Document with many different verification methods

{
 "@context": "https://www.w3.org/ns/did/v1",
 "id": "did:example:123",
 "verificationMethod": [
 {
 "id": "did:example:123#ZC2jXTO6t4R501bfCXv3RxarZyUbdP2w_psLwMuY6ec"
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 },
 {
 "id": "did:example:123#zQ3shP2mWsZYWgvgM11nenXRTx9L1yiJKmkf9dfX7NaM
 "type": "EcdsaSecp256k1VerificationKey2019",
 "controller": "did:example:123",
 "publicKeyBase58": "d5cW2R53NHTTkv7EQSYR8YxaKx7MVCcchjmK5EgCNXxo",
 },
 {
 "id": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A"
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "OKP",
 "crv": "Ed25519",
 "x": "VCpo2LMLhn6iWku8MKvSLg2ZAoC-nlOyPVQaO3FxVeQ"
 }
 },
 {
 "id": "did:example:123#z6LSnjagzhe8Df6gZmroW3wjDd7XQLwAuYfwa4ZeTBCG
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "OKP",
 "crv": "X25519",
 "x": "pE_mG098rdQjY3MKK2D5SUQ6ZOEW3a6Z6T7Z4SgnzCE"
 },
 }
 {
 "id": "did:example:123#4SZ-StXrp5Yd4_4rxHVTCYTHyt4zyPfN1fIuYsm6k3A"
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "EC",

 "crv": "secp256k1",
 "x": "Z4Y3NNOxv0J6tCgqOBFnHnaZhJF6LdulT7z8A-2D5_8",
 "y": "i5a2NtJoUKXkLm6q8nOEu9WOkso1Ag6FTUT6k_LMnGk"
 }
 },
 {
 "id": "did:example:123#n4cQ-I_WkHMcwXBJa7IHkYu8CMfdNcZKnKsOrnHLpFs"
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "omwsC1AqEk6whvxyOltCFWheSQvv1MExu5RLCMT4jVk9khJKv8JeMXWe3bW
 }
 },
 {
 "id": "did:example:123#_TKzHv2jFIyvdTGF1Dsgwngfdg3SH6TpDv0Ta1aOEkw"
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "EC"
 "crv": "P-256",
 "x": "38M1FDts7Oea7urmseiugGW7tWc3mLpJh6rKe7xINZ8",
 "y": "nDQW6XZ7b_u2Sy9slofYLlG03sOEoug3I0aAPQ0exs4"
 }
 },
 {
 "id": "did:example:123#8wgRfY3sWmzoeAL-78-oALNvNj67ZlQxd1ss_NX1hZY"
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-384",
 "x": "GnLl6mDti7a2VUIZP5w6pcRX8q5nvEIgB3Q_5RI2p9F_QVsaAlDN7IG68Jn
 "y": "jq4QoAHKiIzezDp88s_cxSPXtuXYFliuCGndgU4Qp8l91xzD1spCmFIzQgV
 }
 },
 {
 "id": "did:example:123#NjQ6Y_ZMj6IUK_XkgCDwtKHlNTUTVjEYOWZtxhp1n-E"
 "type": "JsonWebKey2020",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-521",

This section is non-normative.

NOTE

These examples are for information purposes only. See W3C Verifiable Credentials Data Model for
additional examples.

 "x": "AVlZG23LyXYwlbjbGPMxZbHmJpDSu-IvpuKigEN2pzgWtSo--Rwd-n78nrW
 "y": "ANIbFeRdPHf1WYMCUjcPz-ZhecZFybOqLIJjVOlLETH7uPlyG0gEoMWnIZX
 }
 }
]
}

11.2 Proving §

https://www.w3.org/TR/vc-data-model/

EXAMPLE 32: Verifiable Credential linked to a verification method of type
Ed25519VerificationKey2018

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/citizenship/v1"
],
 "type": [
 "VerifiableCredential",
 "PermanentResidentCard"
],
 "credentialSubject": {
 "id": "did:example:123",
 "type": [
 "PermanentResident",
 "Person"
],
 "givenName": "JOHN",
 "familyName": "SMITH",
 "gender": "Male",
 "image": "...kJggg==",
 "residentSince": "2015-01-01",
 "lprCategory": "C09",
 "lprNumber": "000-000-204",
 "commuterClassification": "C1",
 "birthCountry": "Bahamas",
 "birthDate": "1958-08-17"
 },
 "issuer": "did:example:456",
 "issuanceDate": "2020-04-22T10:37:22Z",
 "identifier": "83627465",
 "name": "Permanent Resident Card",
 "description": "Government of Example Permanent Resident Card.",
 "proof": {
 "type": "Ed25519Signature2018",
 "created": "2020-04-22T10:37:22Z",
 "proofPurpose": "assertionMethod",
 "verificationMethod": "did:example:456#key-1",
 "jws": "eyJjcml0IjpbImI2NCJdLCJiNjQiOmZhbHNlLCJhbGciOiJFZERTQSJ9..BhW
 }
}

EXAMPLE 33: Verifiable Credential linked to a verification method of type JsonWebKey2020

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "id": "http://example.gov/credentials/3732",
 "type": ["VerifiableCredential", "UniversityDegreeCredential"],
 "issuer": { "id": "did:example:123" },
 "issuanceDate": "2020-03-10T04:24:12.164Z",
 "credentialSubject": {
 "id": "did:example:456",
 "degree": {
 "type": "BachelorDegree",
 "name": "Bachelor of Science and Arts"
 }
 },
 "proof": {
 "type": "JsonWebSignature2020",
 "created": "2020-02-15T17:13:18Z",
 "verificationMethod": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOp
 "proofPurpose": "assertionMethod",
 "jws": "eyJiNjQiOmZhbHNlLCJjcml0IjpbImI2NCJdLCJhbGciOiJFZERTQSJ9..Y0K
 }
}

This section is non-normative.

EXAMPLE 34: Verifiable Credential as Decoded JWT

{
 "protected": {
 "kid": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A",
 "alg": "EdDSA"
 },
 "payload": {
 "iss": "did:example:123",
 "sub": "did:example:456",
 "vc": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "id": "http://example.gov/credentials/3732",
 "type": [
 "VerifiableCredential",
 "UniversityDegreeCredential"
],
 "issuer": {
 "id": "did:example:123"
 },
 "issuanceDate": "2020-03-10T04:24:12.164Z",
 "credentialSubject": {
 "id": "did:example:456",
 "degree": {
 "type": "BachelorDegree",
 "name": "Bachelor of Science and Arts"
 }
 }
 },
 "jti": "http://example.gov/credentials/3732",
 "nbf": 1583814252
 },
 "signature": "qSv6dpZJGFybtcifLwGf4ujzlEu-fam_M7HPxinCbVhz9iIJCg70UMeQb
}

11.3 Encrypting §

NOTE

These examples are for information purposes only, it is considered a best practice to avoid
dislosing unnecessary information in JWE headers.

The list of issues below are under active discussion and are likely to result in changes to this
specification.

ISSUE 5: Where will the DID contexts(s) live?
Where will the DID contexts(s) live?

EXAMPLE 35: JWE linked to a verification method via kid

{
 "ciphertext": "3SHQQJajNH6q0fyAHmw...",
 "iv": "QldSPLVnFf2-VXcNLza6mbylYwphW57Q",
 "protected": "eyJlbmMiOiJYQzIwUCJ9",
 "recipients": [
 {
 "encrypted_key": "BMJ19zK12YHftJ4sr6Pz1rX1HtYni_L9DZvO1cEZfRWDN2vXe
 "header": {
 "alg": "ECDH-ES+A256KW",
 "apu": "Tx9qG69ZfodhRos-8qfhTPc6ZFnNUcgNDVdHqX1UR3s",
 "apv": "ZGlkOmVsZW06cm9wc3RlbjpFa...",
 "epk": {
 "crv": "X25519",
 "kty": "OKP",
 "x": "Tx9qG69ZfodhRos-8qfhTPc6ZFnNUcgNDVdHqX1UR3s"
 },
 "kid": "did:example:123#zC1Rnuvw9rVa6E5TKF4uQVRuQuaCpVgB81Um2u17F
 }
 }
],
 "tag": "xbfwwDkzOAJfSVem0jr1bA"
}

A. Current Issues §

extensibility pending close

https://github.com/w3c/did-core/issues/5
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22

ISSUE 8: Leverage RFC7518 to specify cryptographic algorithms

Leverage RFC7518 to specify cryptographic algorithms

ISSUE 9: Replace RsaSignature2017 by a standard JWA signature
Replace RsaSignature2017 by a standard JWA signature

ISSUE 10: Explain RsaSignature2018
Explain RsaSignature2018

ISSUE 14: Standardize the key revocation list
Standardize the key revocation list

ISSUE 23: publicKeyJwk, publicKeyHex, publicKeyBase64, publicKeyBase58 missing from
context.
publicKeyJwk, publicKeyHex, publicKeyBase64, publicKeyBase58 missing from context.

ISSUE 33: Cheap DIDs and the option to migrate DIDs between ledgers using standard DID
Deprecation Registries
Cheap DIDs and the option to migrate DIDs between ledgers using standard DID Deprecation
Registries

ISSUE 36: Details on the use of method-specific DID parameters
Details on the use of method-specific DID parameters

ISSUE 55: Add support for ethereumAddress public key type in @context
Add support for ethereumAddress public key type in @context

ISSUE 57: Clarification of other verification methods in authentication section missing

Clarification of other verification methods in authentication section missing

ISSUE 58: Registry handling
Registry handling

jose keys needs-special-call

pending close

pending close

pending close

pending close

discuss extensibility high priority

discuss

pending close

discuss high priority

discuss

pending close

discuss extensibility

https://github.com/w3c/did-core/issues/8
https://github.com/w3c/did-core/issues/9
https://github.com/w3c/did-core/issues/10
https://github.com/w3c/did-core/issues/14
https://github.com/w3c/did-core/issues/23
https://github.com/w3c/did-core/issues/33
https://github.com/w3c/did-core/issues/36
https://github.com/w3c/did-core/issues/55
https://github.com/w3c/did-core/issues/57
https://github.com/w3c/did-core/issues/58
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22jose%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22keys%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22needs-special-call%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22high+priority%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22high+priority%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22

ISSUE 65: Does DID Document metadata belong in the Document?
Does DID Document metadata belong in the Document?

ISSUE 72: Privacy Considerations - Specifically call out GDPR
Privacy Considerations - Specifically call out GDPR

ISSUE 75: tracking revocation of public keys
tracking revocation of public keys

ISSUE 85: Syntactially differentiate data about the DID versus application data

Syntactially differentiate data about the DID versus application data

ISSUE 92: Add CBOR a valid type of DID document syntax similar to JSON and on par with
JSON-LD
Add CBOR a valid type of DID document syntax similar to JSON and on par with JSON-LD

ISSUE 94: Create DID explainer
Create DID explainer

ISSUE 95: Document Structure
Document Structure

ISSUE 104: Horizontal Review: Internationalization self test
Horizontal Review: Internationalization self test

ISSUE 105: Horizontal Review: Accessibility self test
Horizontal Review: Accessibility self test

ISSUE 118: Specification needs to be compliant with WCAG 2.0
Specification needs to be compliant with WCAG 2.0

ISSUE 119: Horizontal Review: offer review opportunity to TAG
Horizontal Review: offer review opportunity to TAG

metadata pending close

discuss editorial metadata

pending close

discuss

high priority metadata pending close

PR exists discuss

discuss horizontal review

discuss

horizontal review i18n-tracker

a11y-tracker horizontal review

editorial just before CR

horizontal review

https://github.com/w3c/did-core/issues/65
https://github.com/w3c/did-core/issues/72
https://github.com/w3c/did-core/issues/75
https://github.com/w3c/did-core/issues/85
https://github.com/w3c/did-core/issues/92
https://github.com/w3c/did-core/issues/94
https://github.com/w3c/did-core/issues/95
https://github.com/w3c/did-core/issues/104
https://github.com/w3c/did-core/issues/105
https://github.com/w3c/did-core/issues/118
https://github.com/w3c/did-core/issues/119
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22metadata%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22metadata%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22high+priority%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22metadata%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22horizontal+review%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22horizontal+review%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22i18n-tracker%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22a11y-tracker%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22horizontal+review%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22just+before+CR%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22horizontal+review%22

ISSUE 122: When is a DID subject not a DID controller (if ever)?
When is a DID subject not a DID controller (if ever)?

ISSUE 137: Should the DID parameters be normative in the spec?
Should the DID parameters be normative in the spec?

ISSUE 151: Include discussion of eIDAS levels-of-assurance
Include discussion of eIDAS levels-of-assurance

ISSUE 154: Decoupling DID Core spec from LD-Proof / LDS specs
Decoupling DID Core spec from LD-Proof / LDS specs

ISSUE 163: Uses of terms defined in the specification should be links to their definitions

Uses of terms defined in the specification should be links to their definitions

ISSUE 165: What are entityship and start-of-authority (SOA) problems?
What are entityship and start-of-authority (SOA) problems?

ISSUE 169: Replace registries administered community groups with registries established by
this specification
Replace registries administered community groups with registries established by this specification

ISSUE 170: Public key "id" and "type" members duplicate JWK "kid" and "kty" members

Public key "id" and "type" members duplicate JWK "kid" and "kty" members

ISSUE 171: Add public key examples using JWKs
Add public key examples using JWKs

ISSUE 174: Underspecified semantics of "updated" property
Underspecified semantics of "updated" property

pending close

pending close

editorial

extensibility pending close

editorial just before CR

editorial pending close

extensibility

editorial jose

editorial jose pending close

editorial metadata

https://github.com/w3c/did-core/issues/122
https://github.com/w3c/did-core/issues/137
https://github.com/w3c/did-core/issues/151
https://github.com/w3c/did-core/issues/154
https://github.com/w3c/did-core/issues/163
https://github.com/w3c/did-core/issues/165
https://github.com/w3c/did-core/issues/169
https://github.com/w3c/did-core/issues/170
https://github.com/w3c/did-core/issues/171
https://github.com/w3c/did-core/issues/174
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22just+before+CR%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22jose%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22jose%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22metadata%22

ISSUE 176: Unsubstantiated statement about protecting against attacks when compromised

Unsubstantiated statement about protecting against attacks when compromised

ISSUE 178: Underspecified statement on combining timestamps with signatures

Underspecified statement on combining timestamps with signatures

ISSUE 185: Supported ciphers in a DID document
Supported ciphers in a DID document

ISSUE 190: What is being discussed in issue 4 (clarification of TERMX via use-cases, spec
pointers, and PR)
What is being discussed in issue 4 (clarification of TERMX via use-cases, spec pointers, and PR)

ISSUE 195: Unclear which verification methods are authorized for did document operations

Unclear which verification methods are authorized for did document operations

ISSUE 198: Add sections on DID Resolution
Add sections on DID Resolution

ISSUE 199: Clarification on what DIDs might identify
Clarification on what DIDs might identify

ISSUE 202: JSON-LD Contexts in Registry
JSON-LD Contexts in Registry

ISSUE 203: Define DID Document Metadata
Define DID Document Metadata

ISSUE 204: Define terminology for properties and values
Define terminology for properties and values

editorial

editorial

pending close

jose

discuss pending close

discuss

pending close

discuss

PR exists extensibility

metadata pending close

PR exists editorial

https://github.com/w3c/did-core/issues/176
https://github.com/w3c/did-core/issues/178
https://github.com/w3c/did-core/issues/185
https://github.com/w3c/did-core/issues/190
https://github.com/w3c/did-core/issues/195
https://github.com/w3c/did-core/issues/198
https://github.com/w3c/did-core/issues/199
https://github.com/w3c/did-core/issues/202
https://github.com/w3c/did-core/issues/203
https://github.com/w3c/did-core/issues/204
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22jose%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22metadata%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22

ISSUE 205: How to treat unknown properties
How to treat unknown properties

ISSUE 207: Add section on extensibility and conformance
Add section on extensibility and conformance

ISSUE 208: IETF did+ld+json media type registration
IETF did+ld+json media type registration

ISSUE 236: publicKeyHex format unused by spec currently
publicKeyHex format unused by spec currently

ISSUE 240: Should did-core restrict the use of JWK?
Should did-core restrict the use of JWK?

ISSUE 248: Need term for relying party
Need term for relying party

ISSUE 249: How to mitigate the single source of failure wrt/ "Trust into the Universal
Resolver"?
How to mitigate the single source of failure wrt/ "Trust into the Universal Resolver"?

ISSUE 253
Added DID resolution and dereferencing contracts.

ISSUE 258: List of early implementations conforming to spec?
List of early implementations conforming to spec?

ISSUE 259: DIDs and JOSE: publicKey.id and publicKey.publicKeyJwk.kid
DIDs and JOSE: publicKey.id and publicKey.publicKeyJwk.kid

ISSUE 260: Clear explanation on how can A DID have more than one controller

Clear explanation on how can A DID have more than one controller

discuss extensibility

editorial extensibility pending close

extensibility

pending close

jose

pending close

discuss pending close

editorial

pending close question

https://github.com/w3c/did-core/issues/205
https://github.com/w3c/did-core/issues/207
https://github.com/w3c/did-core/issues/208
https://github.com/w3c/did-core/issues/236
https://github.com/w3c/did-core/issues/240
https://github.com/w3c/did-core/issues/248
https://github.com/w3c/did-core/issues/249
https://github.com/w3c/did-core/issues/253
https://github.com/w3c/did-core/issues/258
https://github.com/w3c/did-core/issues/259
https://github.com/w3c/did-core/issues/260
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22jose%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22discuss%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22

ISSUE 261: Definition of the term "client" in regard to SSI principles
Definition of the term "client" in regard to SSI principles

ISSUE 266: Should DID support self-signed certificates?
Should DID support self-signed certificates?

ISSUE 267
Put key points up front

ISSUE 268: What degree should proof purposes be defined for specific application layer usages?

What degree should proof purposes be defined for specific application layer usages?

ISSUE 269: transfer of controllership and it's intersection with the subject of an identifier

transfer of controllership and it's intersection with the subject of an identifier

ISSUE 270: did parameter equivilance
did parameter equivilance

ISSUE 272: Remove all unspecified properties/functionality from the spec
Remove all unspecified properties/functionality from the spec

ISSUE 273: invert mapping between proof purposes and verification methods?
invert mapping between proof purposes and verification methods?

ISSUE 274: Ambiguity around necessity of populated top-level DID Document 'id' property

Ambiguity around necessity of populated top-level DID Document 'id' property

ISSUE 280: Remove uses of publicKeyHex
Remove uses of publicKeyHex

editorial pending close

extensibility pending close question

PR exists editorial

PR exists editorial question

question

extensibility question

pending close

question

editorial pending close

https://github.com/w3c/did-core/issues/261
https://github.com/w3c/did-core/issues/266
https://github.com/w3c/did-core/issues/267
https://github.com/w3c/did-core/issues/268
https://github.com/w3c/did-core/issues/269
https://github.com/w3c/did-core/issues/270
https://github.com/w3c/did-core/issues/272
https://github.com/w3c/did-core/issues/273
https://github.com/w3c/did-core/issues/274
https://github.com/w3c/did-core/issues/280
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22extensibility%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22

ISSUE 281: Specifications needed for supported key representations publicKeyJwk,
publcKeyPem, and publicKeyBase58
Specifications needed for supported key representations publicKeyJwk, publcKeyPem, and
publicKeyBase58

ISSUE 282
Added CBOR section

ISSUE 283: Verification method block should be a first citizen like public keys
Verification method block should be a first citizen like public keys

ISSUE 289: Should DID Methods expose Proof Purposes for DID Operations?
Should DID Methods expose Proof Purposes for DID Operations?

ISSUE 291: PING Horizontal Review
PING Horizontal Review

ISSUE 292: Horizontal Review Tracking
Horizontal Review Tracking

ISSUE 293: Remove `proof`
Remove proof

ISSUE 294: Create a seperate top level block for defining proof purposes
Create a seperate top level block for defining proof purposes

ISSUE 295
Define simple type-less resolution function

ISSUE 296
Define resolution function with data types

ISSUE 297
Define resolution function with data types and property values

editorial keys pending close

PR exists

question

horizontal review

horizontal review

PR exists

pending close

https://github.com/w3c/did-core/issues/281
https://github.com/w3c/did-core/issues/282
https://github.com/w3c/did-core/issues/283
https://github.com/w3c/did-core/issues/289
https://github.com/w3c/did-core/issues/291
https://github.com/w3c/did-core/issues/292
https://github.com/w3c/did-core/issues/293
https://github.com/w3c/did-core/issues/294
https://github.com/w3c/did-core/issues/295
https://github.com/w3c/did-core/issues/296
https://github.com/w3c/did-core/issues/297
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22editorial%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22keys%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22question%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22horizontal+review%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22horizontal+review%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22PR+exists%22
https://github.com/w3c/did-core/issues/?q=is%3Aissue+is%3Aopen+label%3A%22pending+close%22

ISSUE 298
Define resolution function with data types, property values, and simple metadata structures

ISSUE 299
Define resolution function with data types, property values, and full metadata structures

ISSUE 300
Define resolution function with data types, property values, and full metadata structures, without
transformation

This section will be submitted to the Internet Engineering Steering Group (IESG) for review, approval,
and registration with IANA when this specification becomes a W3C Proposed Recommendation.

Type name:
application

Subtype name:
did+json

Required parameters:
None

Optional parameters:
None

Encoding considerations:
See RFC 8259, section 11.

Security considerations:
See RFC 8259, section 12 [RFC8259].

Interoperability considerations:
Not Applicable

Published specification:
http://www.w3.org/TR/did-core/

Applications that use this media type:

B. IANA Considerations §

B.1 application/did+json §

https://github.com/w3c/did-core/issues/298
https://github.com/w3c/did-core/issues/299
https://github.com/w3c/did-core/issues/300
https://tools.ietf.org/html/rfc8259#section-11
https://tools.ietf.org/html/rfc8259#section-12

Any application that requires an identifier that is decentralized, persistent, cryptographically
verifiable, and resolvable. Applications typically consist of cryptographic identity systems,
decentralized networks of devices, and websites that issue or verify W3C Verifiable Credentials.

Additional information:

Magic number(s):
Not Applicable

File extension(s):
.did

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ivan Herman <ivan@w3.org>

Intended usage:
Common

Restrictions on usage:
None

Author(s):
Drummond Reed, Manu Sporny, Markus Sabadello, Dave Longley, Christopher Allen

Change controller:
W3C

Fragment identifiers used with application/did+json are treated according to the rules defined in DID
Core v1.0, Fragment [DID-CORE].

Type name:
application

Subtype name:
did+ld+json

Required parameters:
None

Optional parameters:
None

Encoding considerations:
See RFC 8259, section 11.

B.2 application/did+ld+json §

https://w3c.github.io/did-core/index.html?specStatus=WD&shortName=did-core&publishDate=2020-10-02&previousMaturity=WD&previousPublishDate=2020-10-01#fragment
https://tools.ietf.org/html/rfc8259#section-11

Security considerations:
See JSON-LD 1.1, Security Considerations [JSON-LD11].

Interoperability considerations:
Not Applicable

Published specification:
http://www.w3.org/TR/did-core/

Applications that use this media type:
Any application that requires an identifier that is decentralized, persistent, cryptographically
verifiable, and resolvable. Applications typically consist of cryptographic identity systems,
decentralized networks of devices, and websites that issue or verify W3C Verifiable Credentials.

Additional information:

Magic number(s):
Not Applicable

File extension(s):
.did

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ivan Herman <ivan@w3.org>

Intended usage:
Common

Restrictions on usage:
None

Author(s):
Drummond Reed, Manu Sporny, Markus Sabadello, Dave Longley, Christopher Allen

Change controller:
W3C

Fragment identifiers used with application/did+ld+json are treated according to the rules associated
with the JSON-LD 1.1: application/ld+json media type [JSON-LD11].

Type name:
application

Subtype name:

B.3 application/did+cbor §

https://www.w3.org/TR/json-ld11/#security
https://www.w3.org/TR/json-ld11/#iana-considerations

did+cbor

Required parameters:
None

Optional parameters:
None

Encoding considerations:
See RFC 7049, section 4.2.

Security considerations:
See RFC 7049, section 10 [RFC7049].

Interoperability considerations:
Not Applicable

Published specification:
http://www.w3.org/TR/did-core/

Applications that use this media type:
Any application that requires an identifier that is decentralized, persistent, cryptographically
verifiable, and resolvable. Applications typically consist of cryptographic identity systems,
decentralized networks of devices, and websites that issue or verify W3C Verifiable Credentials.

Additional information:

Magic number(s):
Not Applicable

File extension(s):
.did

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ivan Herman <ivan@w3.org>

Intended usage:
Common

Restrictions on usage:
None

Author(s):
Drummond Reed, Manu Sporny, Markus Sabadello, Dave Longley, Christopher Allen, Jonathan
Holt

Change controller:
W3C

https://tools.ietf.org/html/rfc7049#section-3.9
https://tools.ietf.org/html/rfc7049#section-10

Fragment identifiers used with application/did+cbor are treated according to the rules defined in DID
Core v1.0, Fragment [DID-CORE].

Type name:
application

Subtype name:
did+dag+cbor

Required parameters:
None

Optional parameters:
None

Encoding considerations:
See RFC 7049, section 4.2.

Security considerations:
See RFC 7049, section 10 [RFC7049].

Interoperability considerations:
Not Applicable

Published specification:
http://www.w3.org/TR/did-core/

Applications that use this media type:
Any application that requires an identifier that is decentralized, persistent, cryptographically
verifiable, and resolvable. Applications typically consist of cryptographic identity systems,
decentralized networks of devices, and websites that issue or verify W3C Verifiable Credentials.

Additional information:

Magic number(s):
Not Applicable

File extension(s):
.did

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ivan Herman <ivan@w3.org>

Intended usage:
Common

B.4 application/did+dag+cbor §

https://w3c.github.io/did-core/index.html?specStatus=WD&shortName=did-core&publishDate=2020-10-02&previousMaturity=WD&previousPublishDate=2020-10-01#fragment
https://tools.ietf.org/html/rfc7049#section-4.2
https://tools.ietf.org/html/rfc7049#section-10

Restrictions on usage:
None

Author(s):
Drummond Reed, Manu Sporny, Markus Sabadello, Dave Longley, Christopher Allen, Jonathan
Holt

Change controller:
W3C

Fragment identifiers used with application/did+cbor are treated according to the rules defined in DID
Core v1.0, Fragment [DID-CORE].

[BASE58]
The Base58 Encoding Scheme. Manu Sporny. IETF. December 2019. Internet-Draft. URL:
https://tools.ietf.org/html/draft-msporny-base58

[DID-CORE]
Decentralized Identifiers (DIDs) v1.0. Drummond Reed; Manu Sporny; Markus Sabadello; Dave
Longley; Christopher Allen; Jonathan Holt. W3C. 1 October 2020. W3C Working Draft. URL:
https://www.w3.org/TR/did-core/

[DID-SPEC-REGISTRIES]
DID Specification Registries. Orie Steele; Manu Sporny. Decentralized Identifier Working Group.
W3C Editor's Draft. URL: https://w3c.github.io/did-spec-registries/

[INFRA]
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL:
https://infra.spec.whatwg.org/

[JSON-LD]
JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Markus Lanthaler. W3C. 16 January 2014. W3C
Recommendation. URL: https://www.w3.org/TR/json-ld/

[JSON-LD11]
JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 16 July 2020.
W3C Recommendation. URL: https://www.w3.org/TR/json-ld11/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best
Current Practice. URL: https://tools.ietf.org/html/rfc2119

C. References §

C.1 Normative references §

https://w3c.github.io/did-core/index.html?specStatus=WD&shortName=did-core&publishDate=2020-10-02&previousMaturity=WD&previousPublishDate=2020-10-01#fragment
https://tools.ietf.org/html/draft-msporny-base58
https://tools.ietf.org/html/draft-msporny-base58
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://w3c.github.io/did-spec-registries/
https://w3c.github.io/did-spec-registries/
https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

[RFC3552]
Guidelines for Writing RFC Text on Security Considerations. E. Rescorla; B. Korver. IETF. July
2003. Best Current Practice. URL: https://tools.ietf.org/html/rfc3552

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986

[RFC5234]
Augmented BNF for Syntax Specifications: ABNF. D. Crocker, Ed.; P. Overell. IETF. January
2008. Internet Standard. URL: https://tools.ietf.org/html/rfc5234

[RFC6973]
Privacy Considerations for Internet Protocols. A. Cooper; H. Tschofenig; B. Aboba; J. Peterson;
J. Morris; M. Hansen; R. Smith. IETF. July 2013. Informational. URL:
https://tools.ietf.org/html/rfc6973

[RFC7049]
Concise Binary Object Representation (CBOR). C. Bormann; P. Hoffman. IETF. October 2013.
Proposed Standard. URL: https://tools.ietf.org/html/rfc7049

[RFC7517]
JSON Web Key (JWK). M. Jones. IETF. May 2015. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7517

[RFC7638]
JSON Web Key (JWK) Thumbprint. M. Jones; N. Sakimura. IETF. September 2015. Proposed
Standard. URL: https://tools.ietf.org/html/rfc7638

[RFC8141]
Uniform Resource Names (URNs). P. Saint-Andre; J. Klensin. IETF. April 2017. Proposed
Standard. URL: https://tools.ietf.org/html/rfc8141

[RFC8152]
CBOR Object Signing and Encryption (COSE). J. Schaad. IETF. July 2017. Proposed Standard.
URL: https://tools.ietf.org/html/rfc8152

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best
Current Practice. URL: https://tools.ietf.org/html/rfc8174

[RFC8259]
The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December
2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259

[RFC8610]
Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary
Object Representation (CBOR) and JSON Data Structures. H. Birkholz; C. Vigano; C. Bormann.
IETF. June 2019. Proposed Standard. URL: https://tools.ietf.org/html/rfc8610

https://tools.ietf.org/html/rfc3552
https://tools.ietf.org/html/rfc3552
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc6973
https://tools.ietf.org/html/rfc6973
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7638
https://tools.ietf.org/html/rfc7638
https://tools.ietf.org/html/rfc8141
https://tools.ietf.org/html/rfc8141
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8610
https://tools.ietf.org/html/rfc8610

[XMLSCHEMA11-2]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. David Peterson; Sandy
Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C.
5 April 2012. W3C Recommendation. URL: https://www.w3.org/TR/xmlschema11-2/

[DID-RESOLUTION]
Decentralized Identifier Resolution. Markus Sabadello; Dmitri Zagidulin. Credentials Community
Group. Draft Community Group Report. URL: https://w3c-ccg.github.io/did-resolution/

[DID-RUBRIC]
Decentralized Characteristics Rubric v1.0. Joe Andrieu. Credentials Community Group. Draft
Community Group Report. URL: https://w3c.github.io/did-rubric/

[DID-USE-CASES]
Decentralized Identifier Use Cases. Joe Andrieu; Kim Hamilton Duffy; Ryan Grant; Adrian
Gropper. Decentralized Identifier Working Group. W3C Editor's Draft. URL:
https://w3c.github.io/did-use-cases/

[DNS-DID]
The Decentralized Identifier (DID) in the DNS. Alexander Mayrhofer; Dimitrij Klesev; Markus
Sabadello. February 2019. Internet-Draft. URL: https://datatracker.ietf.org/doc/draft-mayrhofer-
did-dns/

[HASHLINK]
Cryptographic Hyperlinks. Manu Sporny. IETF. December 2018. Internet-Draft. URL:
https://tools.ietf.org/html/draft-sporny-hashlink-02

[IANA-URI-SCHEMES]
Uniform Resource Identifier (URI) Schemes. IANA. URL: https://www.iana.org/assignments/uri-
schemes/uri-schemes.xhtml

[MATRIX-URIS]
Matrix URIs - Ideas about Web Architecture. Tim Berners-Lee. December 1996. Personal View.
URL: https://www.w3.org/DesignIssues/MatrixURIs.html

[RFC4122]
A Universally Unique IDentifier (UUID) URN Namespace. P. Leach; M. Mealling; R. Salz. IETF.
July 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc4122

[RFC4648]
The Base16, Base32, and Base64 Data Encodings. S. Josefsson. IETF. October 2006. Proposed
Standard. URL: https://tools.ietf.org/html/rfc4648

[RFC6901]

C.2 Informative references §

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://w3c-ccg.github.io/did-resolution/
https://w3c-ccg.github.io/did-resolution/
https://w3c.github.io/did-rubric/
https://w3c.github.io/did-rubric/
https://w3c.github.io/did-use-cases/
https://w3c.github.io/did-use-cases/
https://datatracker.ietf.org/doc/draft-mayrhofer-did-dns/
https://datatracker.ietf.org/doc/draft-mayrhofer-did-dns/
https://tools.ietf.org/html/draft-sporny-hashlink-02
https://tools.ietf.org/html/draft-sporny-hashlink-02
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.w3.org/DesignIssues/MatrixURIs.html
https://www.w3.org/DesignIssues/MatrixURIs.html
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648

JavaScript Object Notation (JSON) Pointer. P. Bryan, Ed.; K. Zyp; M. Nottingham, Ed.. IETF.
April 2013. Proposed Standard. URL: https://tools.ietf.org/html/rfc6901

[RFC7230]
Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. R. Fielding, Ed.; J.
Reschke, Ed.. IETF. June 2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7230.html

[RFC7231]
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. R. Fielding, Ed.; J. Reschke,
Ed.. IETF. June 2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7231.html

[RFC7515]
JSON Web Signature (JWS). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://tools.ietf.org/html/rfc7515

[VC-DATA-MODEL]
Verifiable Credentials Data Model 1.0. Manu Sporny; Grant Noble; Dave Longley; Daniel
Burnett; Brent Zundel. W3C. 19 November 2019. W3C Recommendation. URL:
https://www.w3.org/TR/vc-data-model/

↑

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6901
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7231.html
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

